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Abstract 

Background In sub-Saharan Africa, Plasmodium falciparum is the most prevalent species of malaria parasites. In 
endemic areas, malaria is mainly diagnosed using microscopy or rapid diagnostic tests (RDTs), which have limited sen-
sitivity, and microscopic expertise is waning in non-endemic regions. Matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) mass spectrometry (MS) is nowadays the standard method in routine microbiology laboratories 
for bacteria and fungi identification in high-income countries, but is rarely used for parasite detection. This study aims 
to employ MALDI-TOF MS for identifying malaria by distinguishing P. falciparum-positive from P. falciparum-negative sera.

Methods Sera were obtained from 282 blood samples collected from non-febrile, asymptomatic people aged 5 
to 58 years in southern Côte d’Ivoire. Infectious status and parasitaemia were determined by both RDTs and micros-
copy, followed by a categorization into two groups (P. falciparum-positive and P. falciparum-negative samples). 
MALDI-TOF MS analysis was carried out by generating protein spectra profiles from 131 Plasmodium-positive and 94 
Plasmodium-negative sera as the training set. Machine learning (ML) algorithms were employed for distinguishing P. 
falciparum-positive from P. falciparum-negative samples. Subsequently, a subset of 57 sera (42 P. falciparum-positive 
and 15 P. falciparum-negative) was used as the validation set to evaluate the best two of the four models trained.

Results MALDI-TOF MS was able to generate good-quality spectra from both P. falciparum-positive and P. falciparum-
negative serum samples. High similarities between the protein spectra profiles did not allow for distinguishing 
the two groups using principal component analysis (PCA). When four supervised ML algorithms were tested by ten-
fold cross-validation, P. falciparum-positive sera were discriminated against P. falciparum-negative sera with a global 
accuracy ranging from 73.28% to 81.30%, while sensitivity ranged from 70.23% to 83.97%. The independent test 
performed with a subset of 57 serum samples showed accuracies of 85.96% and 89.47%, and sensitivities of 90.48% 
and 92.86%, respectively, for LightGBM and RF.

Conclusion MALDI-TOF MS combined with ML might be applied for detection of protein profiles related to P. 
falciparum malaria infection in human serum samples. Additional research is warranted for further optimization such 
as specific biomarkers detection or using other ML models.
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Graphical Abstract

Background
Malaria is a protozoan disease caused by parasites 
of the genus Plasmodium, which are transmitted by 
Anopheles mosquitoes [1]. Species differentiation is 
of great importance for clinical decision-making and 
selection of the adequate treatment regimen [2]. It is 
the most important parasitic disease causing around 
249 million cases in 85 malaria-endemic countries and 
608,000 related deaths in 2022 [3]. The African region, 
especially sub-Saharan Africa, is the most affected 

region with 233 million cases, representing 94% of 
global cases and an estimated 580,000 annual deaths 
in 2022, most of which are attributable to Plasmodium 
falciparum [3, 4]. In Cote d’Ivoire, it is estimated that 
about 7,343,000 million malaria cases and 1555 deaths 
occur each year [3]. Infections and malaria-related 
deaths affect mostly pre-school-aged children (pre-
SAC) (i.e., children under 5  years old), who are the 
most vulnerable populations (76% of global deaths) [3].
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Malaria is mainly diagnosed by morphologic analysis 
of stained blood smears (thin and thick smears) and spe-
cies differentiation is based on distinct morphological 
features, such as Schüffner’s dots, Maurer’s clefts, ring 
forms, shape of gametocytes [5]. Rapid diagnostic tests 
(RDTs) are also commonly employed, but their sensitiv-
ity varies and is lower for species other than P. falciparum 
[6]. Alternative methods such as nucleic acid amplifica-
tion tests (NAATs) [e.g., real-time PCR, nested PCR, 
multiplex PCR, loop-mediated isothermal amplification 
(LAMP), or nucleic acid sequence-based amplification 
(NASBA)] based on the detection of 18S rRNA or other 
specific gene targets [e.g., telomere-associated repetitive 
element 2 (TARE-2), var acidic terminal sequence (var-
ATS), mitochondrial DNA, or cytochrome oxidase III 
(COX-III)] can also be employed [7, 8]. The limitations of 
currently available techniques (e.g., the limited sensitivity 
of RTDs, challenging and sometimes unclear microscopy, 
and the scarcity of specific PCR kits in resource-limited 
countries, as well as the waning parasitological exper-
tise in routine microbiology laboratories in non-endemic 
regions) are encouraging the development of new alter-
native approaches [8].

Matrix-assisted laser desorption/ionization  time-of-
flight (MALDI-TOF) mass spectrometry (MS) is a rapid, 
accurate, and cost-effective technique based on the anal-
ysis of protein spectra profiles. Indeed, it is nowadays 
used as the standard diagnostic method for the identi-
fication of bacteria, mycobacteria, and fungi in clinical 
laboratories in high-income countries [9–12]. The appli-
cability of this technique has been investigated as a new 
tool for the identification of parasites, particularly for 
malaria diagnosis through haemozoin detection [13, 14]. 
More recently, a proof-of-concept study has investigated 
the utilization of MALDI-TOF MS as a new technique 
for diagnosing malaria by detecting P. falciparum isolated 
from infected red blood cells (iRBCs) using a culture-
based approach [15]. The new trend of introducing arti-
ficial intelligence (AI), machine learning (ML), and deep 
learning (DL) into microbiology laboratories has demon-
strated its applicability for improved diagnostic accuracy 
and automating the microscopic analysis of blood smears 
to detect malaria [16–18]. Similarly, the use of such 
approaches combining ML algorithms and MALDI-TOF 
MS could extend the applicability of MALDI-TOF MS 
to the direct analysis of more complex matrices such as 
blood, or serum for malaria diagnosis. Hence, a detailed 
assessment of MALDI protein spectra profiles of infected 
serum samples could be of a great interest in detecting P. 
falciparum malaria. Against this background, this study 
aimed to employ MALDI-TOF MS coupled with ML 
algorithms for the identification of P. falciparum malaria 
infection in human sera by assessing its identification 

accuracy for differentiating human serum of non-P. fal-
ciparum infected participants from serum infected with 
P. falciparum.

Methods
Ethics statement
All the procedures involving humans were conducted in 
strict accordance with the Institutional local Guidelines 
and approved by the National Ethical Committee for Life 
Science and Health of the Ministry of Health and Pub-
lic Hygiene of Côte d’Ivoire under the number 056-21/
MSHP/CNESVS-km. Consents were obtained from all 
adult participants as well as from parents or legal guard-
ians of participants aged below 18 years. Clinical malaria 
cases were provided with medication in accordance with 
the country guidelines.

Origin of samples
Only asymptomatic participants were included. Indi-
viduals with an acute or uncontrolled illness (for exam-
ple severe anaemia defined as haemoglobin < 8.0 d/dL, 
or persistent fever) assessed by a clinician, or who had 
received anthelminthics in the last four weeks, were 
excluded. Venous (for serum) and finger prick blood (for 
RDT) samples were obtained from consenting partici-
pants and/or with the consent of the parents/tutors aged 
between five and 58  years old in five malaria-endemic 
areas (Bekpou, Taboutou, Allepila, Ouellezue, and 
Odoguie) in the southern region of Côte d’Ivoire between 
November and December 2021 (Fig.  1). Fingerprick 
blood was used to perform the RDT and blood smear on-
site and the venous blood samples collected were trans-
ported to the local laboratory for serum isolation.

Antigenic and microscopic identification
RDTs (CareStart pLDH(pan), AccessBio, Somerset, NJ, 
USA, catalog number RMNM-02571) and blood smear 
techniques (thin and thick smears) were performed 
using finger prick blood samples following the manufac-
turer’s instructions to determine the infectious status, 
the parasite density, and the causative malaria infection. 
Parasite density was calculated using only thick blood 
smear microscopy readings. Individual parasitaemia was 
determined by assuming a standard white blood cells 
(WBCs) count of 8000/µL of blood [19]. Both asexual 
and gametocyte stages of the parasite were counted, in 
parallel with WBCs, until reaching 200 WBCs, or 500 
WBCs if less than 10 parasites were detected [20]. A 
slide was considered negative if no asexual or gameto-
cyte stage was found after counting 500 WBCs. Serum 
samples were subsequently prepared with the venous 
blood by centrifugation (5634×g for 10 min) and frozen 
in cryotubes before being transferred to the Institute of 



Page 4 of 12Kone et al. Malaria Journal          (2025) 24:130 

Medical Microbiology and Hygiene in Germany for fur-
ther MALDI-TOF MS analysis. Upon receipt in Hom-
burg (Germany), all samples were kept at –20 °C pending 
further examination.

MALDI‑TOF MS analysis
Sample preparation and protein extraction
A total of 282 serum samples selected accordingly to the 
positive RDTs and microscopy results (i.e., only P. falci-
parum, positive for both techniques), were defrosted at 
room temperature under a biosafety cabinet and meas-
ured by MALDI-TOF MS between April and Mai 2022. 
A protein extraction protocol using formic acid and ace-
tonitrile described elsewhere was adapted and employed 
in this study [21, 22]. In brief, 50 µL of serum was placed 
in a tube containing a pinch of Zirconium beads and 
mixed by vortex. After centrifugation at 18,312 × g for 
2  min, the supernatant was discarded and 300  µL of 
HPLC-grade water and 900 µL Absolut ethanol were 
added to the pellet (~ 10 µL of serum + beads) and mixed, 
followed by another centrifugation step at 18,312×g for 

2  min. After discarding the supernatant, 10 µL of 70% 
(v/v) formic acid and 10 µL acetonitrile were added and 
mixed by vortex. This procedure was applied in tripli-
cates (i.e., three different days) to each serum sample to 
ensure reproducibility.

MALDI‑target plate preparation and measurements
The protein extracts obtained from the previous sec-
tion were centrifuged at 18,312×g for 2  min. For each 
replicate, one µL of the clear supernatant was spot-
ted four different spots onto the MALDI-TOF MS tar-
get plate (Bruker Daltonics, Bremen, Germany) then 
allowed to dry completely before overlaying 1 µL of 
α-cyano-4-hydroxycinnamic acid (CHCA) matrix solu-
tion (Bruker Daltonics, Bremen, Germany), composed 
of saturated CHCA 50% (v/v) of acetonitrile, 2.5% (v/v) 
of trifluoroacetic acid and 47.5% (v/v) of LC–MS grade 
water. Each of the four spots was then measured two 
times to obtain 8 spectra per protein extraction (i.e., 24 
spectra per sample). Of note, not all samples in one cat-
egory were acquired separately from the other category. 

Fig. 1 Map showing the study area: localization of the five malaria-endemic villages (Ouellezue, Allepila, Odoguie, Bekpou, and Taboutou) 
in Southern Côte d’Ivoire
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Simultaneous acquisition has also occurred on the same 
plate. A total of 173 P. falciparum-positive, and 109 P. fal-
ciparum-negative sera were analysed using the FlexCon-
trol® software version 3.4 (Bruker Daltonics, Bremen, 
Germany) for spectra acquisition. Bacterial test standard 
(BTS) (Bruker Daltonics, Bremen, Germany), which is 
an extract of Escherichia coli that is spiked with two high 
molecular weight proteins, was used to calibrate the mass 
spectrometer. Dried MALDI plates were then placed into 
the Microflex LT Mass Spectrometer (Bruker Daltonics) 
for measurements.

MALDI‑TOF MS parameters
Measurements were performed using the AutoXecute 
algorithm implemented in the  FlexControl© software ver-
sion 3.4. For each spot, a total of 240 laser shots (40 shots 
each, in six random positions) were carried out automati-
cally to generate protein mass profiles in linear positive 
ion mode with a laser frequency of 60 Hz, a high voltage 
of 20 kV, a pulsed ion extraction of 180 ns, a total of at 
least 80 shots allowed before automated termination, an 
evaluation mass range of ± 200 Da, and a minimum inten-
sity threshold of 600 a.u. Mass charge ratios range (m/z) 
were measured between 2 and 20 kDa.

Spectra treatment, classification and comparison analysis
Pre-processing parameters A total of 6768 (282 sam-
ples × 3 biological replicates × 8 technical replicates) raw 
spectra were generated. The dataset was randomly split 
into training (i.e., 80% of the data, including 131 P. fal-
ciparum-positive, and 94 P. falciparum-negative sera) 
and test (i.e., 20% of the data, including 42 P. falciparum-
positive, and 15 P. falciparum-negative sera) sets using 
Python (version 3.13.1) and exported into the online 
Clover MS Data Analysis® software (https:// platf orm. 
clove rmsda taana lysis. com, Clover Bioanalytical Software, 
Granada, Spain) for further investigation. Default param-
eters reported elsewhere were used during preprocessing 
[23, 24]. Variance stabilization and Savitzky–Golay filter 
(window length 11; polynomial order 3) were applied 
for smoothing spectra, the baseline was removed using 
the top-hat filter method (factor 0.02). Replicated spec-
tra were aligned using the following parameters: allowed 
shift, medium; constant tolerance, 0.2  Da; linear toler-
ance, 2000 ppm in order to create one average spectrum 
per sample, which will be used for classification and com-
parison analysis.

Classification: training using tenfold cross-validation 
of four ML algorithms A peak matrix was generated from 
pre-processed spectra and used for comparison analysis. 
Spectra were normalized using Total Ion Current (TIC) 
normalization, followed by a “threshold method” (factor 

0.01), where peaks with an intensity below 1% of the maxi-
mum intensity were not included; a constant tolerance of 
0.5 Da; and a linear tolerance of 500 ppm [23, 24].

The spectra were classified into two categories (posi-
tive and negative) according to the infectious status and 
subjected to different classification algorithms in order 
to distinguish P. falciparum-positive sera from P. falci-
parum-negative sera. Supervised (i.e., a guided learning 
system with training data associated with the pre-defined 
labels) ML algorithms were used to assess the classifica-
tion. Four widely used supervised ML algorithms for 
MALDI-TOF mass spectra analysis [linear super vec-
tor machine (SVM) with PCA technique applied using 
87 components (95.16% variance), partial least squares-
discriminant analysis (PLS-DA) with PCA technique 
applied using 9 components (43.95% variance), random 
forest (RF), and light gradient boosting model (GBM)] 
were applied [25, 26]. These algorithms were trained 
using k-fold cross-validation (k = 10) for internal valida-
tion. Oversampling was also applied using SMOTE algo-
rithm. A confusion matrix (generating values such as 
accuracy, specificity, sensitivity, F1-score, positive predic-
tion value or precision, and negative prediction value), as 
well as the area under receiver operating characteristic 
(AUROC) curve, were used as performance metrics of 
the supervised ML algorithms to evaluate their discrimi-
nation power, with higher values indicating greater dis-
crimination [26].

Independent test of  the  two best models The two best 
models of the four tested during the training phase were 
evaluated by testing MALDI-spectra generated from a 
subset of 57 serum samples (42 positives and 15 nega-
tives). The spectra were pre-processed using the same 
parameters as the training phase.

Results
Prevalence and malaria confirmation
A total of 486 individuals aged between five and 58 years 
old (mean = 11.2 ± 5.1) participated in this study, includ-
ing 270 males, 214 females, and 2 people for whom gen-
der information was not reported. RDT and microscopy 
analyses showed P. falciparum infection prevalences 
of 69.3% (337/486) and 65.6% (319/486) respectively. 
Most of the positive samples were P. falciparum (95.6%; 
305/319) with parasite densities ranging between 48 and 
34′320 p/µL. Plasmodium malariae and mixed P. malar-
iae/falciparum were detected in 6/319 (1.9%) and 8/319 
(2.5%) positive samples, respectively (Fig.  2; Additional 
file).

https://platform.clovermsdataanalysis.com
https://platform.clovermsdataanalysis.com
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Spectra analysis and cross‑validation performance
Good quality spectra with high intensities were gener-
ated for 173 P. falciparum-positive (131 training, and 42 
test) and 109 P. falciparum-negative (94 training, and 15 
test) sera. Spectra profiles of both groups are very similar 
with many common peaks (Fig. 3).

When supervised ML algorithms were employed, 
tenfold cross-validation results for positive sera showed 
accuracies of 81.68% (107/131) for LightGBM, 83.97% 
(110/12) for RF, 74.05% (97/131) for PLS-DA, and 
70.23% (92/131) for SVM. For negative sera, accura-
cies were 80.92% (106/131), 77.86% (102/131), 75.57% 
(99/131), and 76.34% (100/131), respectively for Light-
GBM, RF, PLS-DA, and SVM. Global accuracies were 

Fig. 2 Average parasite density (p/µL) determined by blood smear 
in the five malaria-endemic villages (Ouellezue, Allepila, Odoguie, 
Bekpou, and Taboutou) in Southern Côte d’Ivoire

Fig. 3 Representative protein spectra profiles of P. falciparum-positive and P. falciparum-negative sera



Page 7 of 12Kone et al. Malaria Journal          (2025) 24:130  

81.3%, 80.92%, 74.81%, and 73.28%, respectively for 
LightGBM, RF, PLS-DA, and SVM. Other metrics such 
as sensitivity, specificity, and F1-score (harmonic mean 
of precision and sensitivity) showed higher values for 
LightGBM (sensitivity: 81.68%; specificity: 80.92%, 
F1-score: 81.37%) and RF (sensitivity: 83.97; specific-
ity: 77.86%, F1-score: 81.48%) than PLS-DA (sensitiv-
ity: 74.05%; specificity: 75.57%, F1-score: 74.62%) and 
SVM (sensitivity: 70.23%; specificity: 76.34%, F1-score: 
72.44) (Table 1). The receiver operating curves (ROC), 

indicating the statistical significance had area under 
the curve (AUC) values of 0.90, 0.89, 0.83, and 0.76 for 
LightGBM, RF, PLS-DA, and SVM, respectively (Fig. 4). 
Distance plots visualization of the different algorithms 
confirmed the performance metrics as the separation of 
the clusters is clearer with RF than with PLS-DA and 
SVM (Fig. 5).

Table 1 Tenfold cross-validation results showing discrimination between P. falciparum-positive sera from P. falciparum-negative sera 
with P. falciparum-positive sera considered as positive category: scores (in %) obtained with four different classifying algorithms (SVM, 
PLS-DA, RF, and LightGBM)

PPV: positive predictive values; NPV: negative predictive values

Accuracy
%

Sensitivity
%

Specificity
%

Error rate
%

PPV
%

NPV
%

F1‑score
%

SVM 73.28 70.23 76.34 26.72 74.8 71.94 72.44

PLS-DA 74.81 74.05 75.57 25.19 75.19 74.44 74.62

RF 80.92 83.97 77.86 19.08 79.14 82.93 81.48

LightGBM 81.3 81.68 80.92 18.7 81.06 81.54 81.37

Fig. 4 Confusion matrix and ROC curves showing the classification results of P. falciparum-positive and P. falciparum-negative sera using MALDI-TOF 
MS spectra and supervised ML algorithms. Pos: positive; Neg: negative; TP: true positive; TN: true negative; FP: false positive; FN: false negative; ROC: 
receiver operating characteristic; AUC: area under the curve
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Independent test of the ML‑based models
The best two ML-based models (Light GBM and RF) of 
the training phase tested with a subset of 57 sera sam-
ples (42 positives and 15 negatives) showed accuracies 
of 90.48% (38/42), and 73.33% (11/15) respectively for 
positive and negative, for LightGBM algorithm. For the 

RF algorithm, accuracy rates were 92.86% (39/42), and 
80% (12/15) for positive and negative sera, respectively 
(Fig. 6). Globally, these two models have accuracy rates 
of 85.96%, and 89.47% respectively for LightGBM and 
RF. While specificity performances were 73.33% for 
LightGBM, and 80% for RF (Table 2).

Fig. 5 Distance plots of tenfold cross-validation results using supervised ML algorithms in Clover MS Data Analysis® software, based on peak matrix 
generated with a threshold of 1% and TIC normalization: distance plots of positive and negative spectra. A Two-dimensional view of partial least 
squares-discriminant analysis (PLS-DA); B Two-dimensional view of Random Forest (RF); C Two-dimensional view of linear support vector machine 
(SVM). Pos: positive (in red); Neg: negative (in green)
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Discussion
MALDI-TOF MS is nowadays a widely used technique in 
clinical routine microbiology laboratories in high-income 
countries [27]. Recently, new applications (e.g., parasite 

identification) have also been investigated, but have yet 
to be applied in clinical samples [15, 28]. Combined with 
ML, MALDI-TOF MS enables a more in-depth study 
(e.g., comparative analysis of infected vs uninfected spec-
imens), especially for unpurified or complex biological 

Fig. 6 Confusion matrix and ROC curves showing the independent test results of P. falciparum-positive and P. falciparum-negative sera using 
MALDI-TOF MS spectra and supervised ML algorithms (LightGBM, and RF). Pos: positive; Neg: negative; TP: true positive; TN: true negative: FP: false 
positive; FN: false negative; AUC: area under the curve

Table 2 Independent test results of two ML algorithms (LightGBM, and RF) showing discrimination performances between P. 
falciparum-positive sera from P. falciparum-negative sera with P. falciparum-positive sera considered as positive category

LightGBM: light gradient boosting model; RF: random forest; PPV: positive predictive values; NPV: negative predictive values

Accuracy
%

Sensitivity
%

Specificity
%

Error rate
%

PPV
%

NPV
%

F1‑score
%

LightGBM 85.96 90.48 73.33 14.04 90.48 73.33 90.48

RF 89.47 92.86 80 10.53 92.86 80 92.86
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matrices such as blood or serum samples, represents a 
step forward in the quest for new, clinically applicable 
diagnostic methods.

In this study, MALDI-TOF MS associated with ML 
algorithms allowed distinguishing P. falciparum-positive 
from P. falciparum-negative samples using protein spec-
tra profiles generated from serum samples. Despite high 
similarities of the spectra profiles of both groups, trained 
classification models using supervised ML algorithms 
such as LightGBM and RF showed significant abilities 
to distinguish P. falciparum-positive from P. falciparum-
negative sera with a global accuracy of 81.3%, and 80.9% 
for LightGBM and RF, respectively. In addition, the abil-
ity to correctly classify new independent sera reaches 
accuracies of 85.96%, and 89.47% for LightGBM and RF, 
respectively.

In the context of exploring alternative MALDI-based 
methods to improve malaria diagnosis, many other 
studies, particularly in entomology, have attempted to 
identify the different species of the parasite vector (i.e., 
Anopheles mosquitoes), the origin of their blood meal, 
and if they carry the malaria parasite or not [29–36].

Other studies have attempted malaria screening 
through the detection of haemozoin using laser des-
orption time-of-flight (LD-TOF) MS [13, 14, 37]. More 
recently, Stauning and colleagues have reported the 
detection of malaria using MALDI-TOF MS by targeting 
directly the Plasmodium parasite extracted from human 
blood [15]. The authors also reported about 30 P. falcipa-
rum-specific peaks, and none of them could be found in 
this present study due to the differences in the methodo-
logical approach. Indeed, Stauning and colleagues ana-
lyzed P. falciparum directly isolated from RBCs of human 
blood, while this study focused on P. falciparum-positive 
sera. As regards the data available to date, this is the first 
study to use MALDI-TOF MS combined with ML algo-
rithms for identifying P. falciparum-infected human sera 
from endemic regions.

The present study is limited by the sample pre-process-
ing and the type of material used (human serum), which 
will be more likely to display host and immune-related 
proteins, making it difficult to detect Plasmodium-spe-
cific peaks. Also, the negative group consisted of par-
ticipants whose serum was negative for P. falciparum, 
but who were not tested for other infections (e.g., blood-
stream infection), which could affect specificity if such 
infections occurred. Other limitations are the restricted 
origin of the samples (all sera were isolated from the 
same endemic country, Côte d’Ivoire), the limited size 
of the dataset, and the lack of species diversity leading 
to limited specificity results since the prediction models 
were trained with a positive category (i.e., positive sera) 
comprising only one type of species (i.e., P. falciparum). 

Nevertheless, P. falciparum is globally the most preva-
lent species in sub-Saharan Africa, but is also reported 
elsewhere outside Africa, having these ML-based models 
developed with such a dataset could be helpful in quickly 
identifying most malaria cases [3, 38]. However, to cor-
rectly deploy appropriate public health strategies based 
on reliable epidemiological data, and limit the severity 
and the spread of the parasite by ensuring effective treat-
ment, it is crucial to precisely identify the parasite species 
[39, 40]. Hence, further investigations are needed (i.e., 
training more robust models with a dataset including all 
types of species from various regions in endemic coun-
tries) to optimize the method for better performance and 
enable Plasmodium species differentiation. Furthermore, 
employing alternative approaches such as deep learning 
(e.g., Siamese Neural Network (SNN), or Triplet Neural 
Networks (TNN)) combined with high-resolution prot-
eomics would enable intensity variation analysis to detect 
potential specific biomarkers for malaria [41].

From a clinical diagnostic perspective, more effort 
should be dedicated to the direct application of MALDI-
TOF MS on biological samples from humans (e.g., human 
blood and/or serum). Indeed, this could be achieved as 
has already been demonstrated for other diseases such 
as COVID-19, where plasma proteome fingerprint pre-
dicted high (hospitalized) and low-risk (outpatients) 
cases with 92% accuracy; or serum analysis of COVID-
patients in comparison with control cases achieved 99% 
accuracy [42, 43]. Likewise, MALDI/ML analysis of 
serum protein fingerprints showed significant differences 
between liver cancer patients and healthy controls [44].

MALDI-TOF mass spectrometry offers many advan-
tages, including the ability to carry out rapid, and reliable 
analyses. However, even if sample analysis is inexpensive, 
the acquisition price remains high (~ one hundred thou-
sand euros) compared to microscopy, which is the gold 
standard for malaria diagnosis.

Conclusion
The results of this study provide evidence of the general 
applicability of the MALDI-TOF MS/ML combination 
for the identification of P. falciparum-positive human 
serum stemming from endemic areas in Côte d’Ivoire. 
Further investigations are needed to optimize this 
method for better performance in terms of accuracy, sen-
sitivity, and specificity, but also to enable species differen-
tiation and quantification.
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