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Abstract 

Background  Spatial and temporal identification of malaria-endemic areas is a key component of vector-borne 
disease control. Strategies to target the most vulnerable populations, the periods of high transmission and the most 
affected geographical areas, should make vector-borne disease control and prevention programmes more cost-
effective. The present study focuses on the spatial and temporal dynamics of malaria cases and the exogenous factors 
influencing the transmission in an area with pyrethroid-resistant mosquito vector populations.

Methods  A prospective cohort study of 1806 children under 10 years of age was conducted over 20 months 
to assess the risk of malaria incidence in the Cove-Zagnanado-Ouinhi (CoZO) health zone located in southern Benin. 
Childhood malaria data were used to identify malaria hotspots according to months of follow-up using spatial scan-
ning methods based on the Kulldoff algorithm. Stability scores were calculated by season to assess incidence hetero-
geneity. Incidence values by month were aggregated with meteorological data; and demographic data were merged 
to detect cross-correlation between incidence and meteorological variables. Generalized equation estimators were 
chosen for their ability to handle intra-group correlation, ensuring robust and interpretable results despite the com-
plexity of the data to identify factors explaining the spatio-temporal heterogeneity of malaria incidence in the CoZO 
health zone.

Results  Malaria incidence ranged from 1.41 (95% IC 0.96–2.08) to 13.91 (95% IC 12.22–15.84) cases per 100 child-
months. Spatial heterogeneity in malaria transmission hotspots was observed over the study period, with relative risks 
ranging from 1.59 (p-value = 0.032) to 16.24 (p-value = 0.002). There was a significant negative association (correlation 
coefficient = − 0.56) between malaria incidence and temperature; and a slightly positive association (correlation coef-
ficient = 0.58) between malaria incidence and rainfall. A significant association between malaria incidence with aver-
age house altitude (adjusted incidence rate ratio [aIRR] 1 (95% IC 0.99–1) P < 0.001), soil type aIRR 0.54 (0.39–0.75) p < 
0.001 and temperature (incidence rate ratio [IRR] 0.69 (0.66–0.73) p < 0.001).
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Background
Despite the progress achieved in recent decades, malaria 
remains a major public health problem in sub-Saharan 
Africa (SSA). The World Health Organization (WHO) 
reported nearly 249 million cases in 2022, with 631,000 
deaths in 85 endemic countries and areas [1]. Malaria 
control strategies mainly include use of insecticide-
treated bed nets, indoor residual spraying, intermit-
tent preventive treatment (IPT), and seasonal malaria 
chemoprevention [2]. The main factors associated with 
malaria-related deaths are often late diagnosis and fail-
ures to receive adequate treatments. Other major chal-
lenges include the spread of resistance in malaria vectors 
to insecticides and parasite resistance to anti-malarial 
drugs [3, 4].

In Benin, approximately 38,122 children under 5 years 
old die, 37.8% of them from malaria, diarrhoea and acute 
respiratory infections every year. The Zou department 
accounts for 47% of all deaths in Benin [5]. However, 
there are very few data available on the factors associ-
ated with malaria transmission in this area of Benin, as 
well as its spatial and temporal variations. Humidity, 
temperature and rainfall have been described as the com-
mon factors influencing malaria transmission in Benin 
[6–8]. Environmental and behavioural factors are also 
well-known to be associated with the spread of malaria 
[9]. Other factors that may influence transmission 
include vegetation, which can provide refuge and shelter 
for mosquitoes in adverse weather conditions, such as 
high summer temperatures, or impede mosquito move-
ment [10–14]. The distribution of larval habitats and the 
development of immature mosquitoes may be influenced 
by topography and soil type, depending on water reten-
tion + time [15–17]. The local malaria transmission risk 
is increased by these larval habitats, as the mosquitoes 
born from them develop and reproduce nearby [18]. The 
distance between larval habitats also affects the spread 
of malaria [13, 19, 20]. In SSA, there are very few studies 
with larger sample sizes using small-scale meteorologi-
cal data to investigate the malaria transmission. Malaria 
incidence is quite heterogeneous in southern Benin, but 
temporal variations are not well-understood, particularly 
in areas with a high prevalence of malaria vector resist-
ance to standard insecticides. Additional evidence is, 

therefore, needed to better inform the spatial and tempo-
ral transmission of malaria incidence in malaria control 
strategies in low-income countries such as Benin.

The aim of this study was to identify and evaluate 
the meteorological, sociodemographic, epidemiologi-
cal, entomological and environmental factors obtained 
by fine scale remote sensing that can explain spatial 
and temporal variations in malaria incidence in a high-
risk region of southern Benin. Knowledge of the spatio-
temporal distribution of the malaria incidence at fine 
scales is now essential for improving malaria control 
interventions.

Methods
Study area
The study was conducted in the Cove Zagnanado and 
Ouinhi (CoZO) health area in the Zou department of 
Benin. The site is located 155 km north of Cotonou, the 
economic capital of Benin. It has a savannah climate with 
an average annual temperature of 27.1 °C and an average 
annual rainfall of 1003.4 mm. There are four seasons, two 
of which are rainy (from March to July and from October 
to November). The CoZO health area comprises 123 vil-
lages spread over 18 sub-districts in 3 districts. Accord-
ing to the 2019 census conducted as part of the New Nets 
project [21], the health zone had a population of 216,289 
inhabitants, including 66,341 children under the age of 
10. In terms of health infrastructure, the health zone has 
15 district health centres, a district hospital, 2 outposts 
and an isolated maternity unit [22].

Data source and population
This study was embedded in the New Nets cluster-ran-
domised control trial, which aimed to evaluate the effi-
cacy of two long-lasting insecticidal nets (LLINs) with 
dual insecticides [pyrethroid-chlorfenapyr (Py-CFP) 
and pyrethroid-pyriproxyfen (Py-PPF)] compared to 
the standard LLIN (pyrethroid-only) for the control of 
malaria transmitted by pyrethroid-resistant vectors. The 
cluster-randomised controlled trial comprised 60 clus-
ters with 20 each randomly assigned to 3 arms. The trial 
methodology has been fully described elsewhere [23]. 
A prospective cohort of 1805 children under 10 years, 
randomly selected from 60 clusters (30 children per 

Conclusion  This study uses innovative technologies such as remote sensing and geographic information systems 
(GIS) to analyse the environmental, meteorological and geographical factors influencing malaria transmission, thereby 
identifying high-risk areas and associated factors. It demonstrates that these tools improve the accuracy of control 
strategies, while highlighting the crucial role of the environment and human behaviour, paving the way for more 
targeted interventions against malaria and other vector-borne diseases.
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cluster), was followed up for 20 months after the LLIN 
distribution.

Data collection
Children were visited at home monthly during the dry 
season and twice a month during the rainy season. Dur-
ing these household visits, children with a temperature 
above 37.5 °C and/or a history of fever in the previous 
48 h were systematically tested for malaria using a rapid 
diagnostic test (RDT). Positive children were treated with 
artemisinin-based combination therapy (ACT) accord-
ing to the Ministry of Health guidelines. Data were col-
lected using digital forms through the ODK (Open data 
kits) collect. The meteorological data were based on data 
downloaded from the Copernicus database “ERA5-Land 
monthly averaged data from 1950 to present” [24].

The cross-sectional baseline survey of the New Net 
project was also used to assess living standards by clus-
ter. Household wealth data were used to calculate Social 
Economic Scores (SES), which were then split in two to 
create two categories of different living standards for 
different households. The modal class of these two cat-
egories is used to determine the standard of living of the 
cluster.

Data processing and analysis
Hotspot analysis
A spatial retrospective multiple analysis with point data 
organized in case files, population and GPS coordinates 
of child households according to months of intervention 
was used with the same parameter settings to standardize 
the analysis over each of the 20 months of the evaluation. 
The Kulldorff’s method with SaTScan V10.1.3 software 
[25, 26] is used, considering the maximum size of the 
default window (50% of the total population) while mini-
mizing the number of cases to 2 with a statistical signifi-
cance of less than or equal to 0.05. This method consists 
of an elliptical (circular) window of variable size, centre 
and rotation to group adjacent clusters into clusters of 
similar incidences. A Monte Carlo algorithm (9999 rep-
licates) was used to test the Kulldorff statistic based on 
the likelihood ratio (Poisson model with purely spatial 
analysis). Only hot spots were considered in our analysis. 
Areas were classified as hotspots the malaria case inci-
dence within the window was significantly higher than 
the incidence outside the window (p < 0.05). If at least 
one child in a study cluster was part of a significant clus-
ter detected by SaTScan for a target period, this cluster 
was considered a hotspot.

Stability analysis
Monthly maps of hotspot clusters were generated and 
stability scores were calculated based on the percentage 

of months in which a cluster was a hotspot [27, 28]. Sta-
bility maps of malaria hotspots using these percentages 
were generated for the study period, by season, study arm 
and soil type using ArcGis V10.3 software.

Statistical analysis
Incidence data aggregated by cluster and month were 
used to find the statistical risk factor within R V4.3.2 soft-
ware. The number of new malaria cases per cluster and 
the size of the dependent population were cumulated, 
along with aggregated meteorological data (tempera-
ture and rainfall), the soil type obtained by remote sens-
ing [24], the average altitude of the children’s houses and 
the standard of living of the clusters (obtained by princi-
pal component analysis of the assets available in house-
holds within the clusters) [21]. The stationarity of the 
obtained incidence and meteorological time series were 
determined using the Kwiatkowski-Phillips-Schmidt-
Shin method. Cross-correlation functions were used to 
determine the lags between the stationary time series 
for incidence and each meteorological factor. The most 
significant lags near the origin were taken into account, 
as well as the value at the origin if it was significant at 
a threshold of 5%. The lag from the origin that is most 
correlated with incidence is included in the univariate 
and varied multiple analyses. Generalised estimating 
equations were then used, given their ability to handle 
grouped or correlated data (repeated measurements over 
time or spatial clusters) while providing robust parameter 
estimates to assess the impact of the different meteoro-
logical and environmental factors on malaria incidence. 
Following comparison of four different correlation struc-
tures (independent, autoregressive, unstructured, or 
exchangeable) using the QIC criterion (Quasi-likelihood 
under the Independence model Criterion), the autore-
gressive correlation structure was identified as the best 
fit to the data. Correction parameters were introduced to 
the models to correct for overdispersion. The impact test 
of the latter indicates that it has no significant impact. In 
order to address theoretical considerations such as the 
introduction of collinearity, which would render the esti-
mates unstable, the performance of the models with the 
original meteorological variables was compared to mod-
els incorporating lagged variables and their dynamics, 
in order to select the final model. The robustness of the 
results is confirmed by the Bootstrap method.

Ethical statement
This study was conducted in compliance with the high-
est ethical standards, guaranteeing the protection of 
the rights, dignity and well-being of the participants. It 
was approved by two recognized ethics committees: the 
Ethics Committee of the Ministry of Health of Benin 
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(Reference N°6/30/MS/DC/SGM/DRFMT/CNERS/SA) 
and the Institutional Ethics Committee of the London 
School of Hygiene and Tropical Medicine (N°16237). 
These approvals attest that the study was designed and 
implemented in accordance with international ethical 
principles, in particular those set out in the Declaration 
of Helsinki.

Participation in this study was entirely voluntary, 
meaning that participants or their legal representatives 
had the right to refuse to participate or to withdraw at 
any time without incurring negative consequences. To 
ensure that participants were fully informed of the objec-
tives, procedures, potential benefits and possible risks of 
the study, written informed consent was obtained from 
an adult guardian in the household or given by the par-
ticipant if over 18 years of age. Consent was obtained for 
children over 10 years of age.

The study was conducted with particular attention to 
fundamental ethical principles, including respect for 
persons, beneficence (maximizing benefits and minimiz-
ing risks) and justice (fairness in the selection of partici-
pants). Informed consent procedures were tailored to 
the age and capacity of participants, ensuring that their 
rights and well-being were protected at every stage of the 
study.

Results
In July 2020, 2283 households were randomly selected to 
form the base sample for the enrolment of children for 
the post-intervention cohort follow-up. There were 3129 
eligible children, of whom 1829 were randomly selected 
and 1806 gave their consent, with 52.2% children under 
5 years of age and a sex ratio of 1.07. In the study area, 
36.7% of the surface was fine medium soil (Table 1).

Between August 2020 and March 2022, there were 
2112 malaria cases in cohort children in the CoZo health 
zone (491, 732, and 889 cases in the Py-CFP LLIN arm, 
Py-PPF LLIN arm, and standard LLIN arm, respectively). 
The highest number of malaria cases (228) occurred in 
August 2021 and the lowest (23) in January 2022. The 
monthly average malaria incidence rate was 6.65 (95% CI 
06.37–06.94) malaria cases per 100 child-month at risk 

for the period. The lowest malaria incidence rate of 01.41 
(95% CI 00.96–02.08) cases per 100 child-month was 
reached in April 2021. This is likely to be due to the anti-
malarial treatment administered to children in March 
2021. In the CFP-LLIN arm, we observed a relatively low 
malaria incidence rate compared with the other arms, 
with an average of 04.61 (95% CI 04.22–05.03) cases per 
100 child-month (Table S2-appendix).

Figure 1 shows a connection between malaria incidence 
and climatic conditions (temperature and rainfall). Inci-
dence peaks often occur during periods of heavy rainfall 
following heat waves.

Hotspot analysis
Malaria incidence-related maps, classified by cluster and 
month, were used to identify the hotspots of households 
most affected by malaria in the study region. Thirteen 
significant hotspots (P-value < 0.05) out of a total of 113 
malaria-susceptible hotspots were observed over the 
whole study period (Fig. 2).

Malaria incidence in the significant hotspots varied 
between 0.86 and 11.37 cases per 100 child-months, 
with a relative risk (RR) of 6.05 (P-value < 0.001) and 7.78 
(P-value = 0.05) by the estimated risk outside the cluster, 
respectively (Table S1-appendix).

Stability analysis
Heterogeneity by season and by trial arm
Stability analysis of the significant clusters showed that 
the northern clusters were the most malaria-prone, with 
a malaria stability score of at least 20%, compared with 
some of the southern clusters, which maintained a stabil-
ity score of less than 20% throughout the study period. 
Variability in levels of stability was also observed across 
seasons. There was a decrease in the number of clusters 
with a stability score of at least 20% between the first 
and second rainy and dry seasons. There was a change in 
the areas showing stability in malaria incidence between 
the two dry seasons (Fig. 3). Similarly, northern clusters 
showed high stability (> 50%) in malaria incidence during 
the two rainy seasons and the first dry season. In addi-
tion, the degree of stability in the incidence of malaria 

Table 1  Baseline characteristics of the children enrolled in the study at the recruitment

Py-PPF: pyrethroid-pyriproxyfen; Py-CFP: pyrethroid-chlorfenapyr; SL: standard of living

Characteristics All Py-PPF-LLIN Py-CFP-LLIN Standard Py-LLIN

Number of clusters 60 20 20 20

Number of children 1806 604 601 601

Proportion of female children 868/1806 (48.1%) 285/604 (47.2%) 291/601 (48.4%) 293/601 (48.8%)

Proportion of children under 5 years 942/1806 (52.2%) 316/604 (52.3%) 304/601 (50.6%) 322/601 (53.6%)

Proportion of < 50% household with high SL) 32/60 (53.3%) 12/20 (60.0%) 10/20 (50.0%) 10/20 (50.0%)

Net usage the night before 1787/1806 (98.9%) 598/604 (99.0%) 593/601 (98.7%) 596/601 (99.2%)
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was distributed across the study arms. Most clusters 
using Py-CFP LLIN nets had a stability score below 30%, 
regardless of the season.

Heterogeneity by season and soil type
Evaluation of the stability score by soil type shows a vari-
ation in the score depending on the soil type in the clus-
ter. Clusters with the same soil type have almost the same 
characteristics in terms of malaria incidence stability. 
Clusters with the same geographical characteristics (soil 
type = medium fine) tend to have a high incidence area, 
regardless of the season. The opposite effect is observed 
in clusters geographically differentiated by fine soil type 
(Fig. 4).

Temporal and risk factors analysis
Regarding the type of LLIN used, clusters in the Py-CFP 
LLIN arm had the lowest incidence rates compared to 
the other arms, regardless of the month. However, simi-
lar trend in the incidence rate was observed in the other 
study LLIN groups (Py-PPF and standard LLIN groups) 
(Fig. 5).

Figure 6 presents the effect of meteorological variables 
on the average malaria incidence. A moderate positive 

correlation was observed between rainfall and malaria 
incidence (correlation coefficient = 0.58), while a mod-
erate negative correlation was found with temperature 
(correlation coefficient = − 0.56). Significant shifts related 
to malaria incidence were observed with temperature 
(p < 0.001) and rainfall (p < 0.001). Significant lags of up 
to two months for rainfall and one month for tempera-
ture were identified. This means that rainfall in months 
t- 2, t- 1 and t are associated with incidence in month t. 
Similarly, the positive value of the Autocorrelation func-
tion (ACF) between incidence t and precipitation at date 
t- 1 suggests that the two series are moving in the same 
direction.

A significant association was found between malaria 
incidence and average house altitude, soil type, temper-
ature, and type of bed net used (Table  2). The absolute 
effect of temperature on malaria incidence was 0.69, reaf-
firming the inverse relationship between temperature 
and malaria incidence. A 1 °C rise in temperature in the 
study area is associated with a 31% reduction in malaria 
incidence rate, and a 1 mm increase in rainfall is asso-
ciated with a 9% increase in malaria incidence rate and 
a 14% increase in malaria incidence rate when all other 
variables remain constant. Ownership of bi-treated nets 

Fig. 1  Trends in incidence and meteorological variables
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Fig. 2  Identification of hot spots (The background map shows the survey area divided into 61 clusters. Cluster 56 is excluded from the New Nets 
pilot surveys. The Kulldoff scanning method identifies clusters of malaria incidence with 95% confidence. These clusters are shown as circles. 
A hotspot is indicated by a red circle. If there is at least one red-marked child’s home in a survey cluster in this hot spot, it is considered a hot cluster. 
Cold zones are indicated by nothing or by black circles with the child’s home in black)
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Fig. 3  Stability of incidence by seasons and by trial arm (The four panels show stability maps using monthly incidence data by season and study 
arm. The presentation of each cluster is based on the number of months it was identified as a hotspot during a season. For example, clusters 
with a stability score above 50% indicate areas where incidence remains consistently high for at least half the months of in the season.)

Fig. 4  Stability of incidence by seasons and soil type (The level of stability in the early seasons is superimposed on the soil type. There are two 
soil types in our study area (medium-fine and fine). Depending on the season, the zone with the medium-fine soil type has an incidence stability 
of about 50%, while the zone with the fine soil type has an incidence stability of no more than 20%, regardless of the season)
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Fig. 5  Trends in malaria incidence per month and trial arm among cohort children in the Cove Zagnanado and Ouinhi (CoZO) health area, Benin, 
2020–2022

Fig. 6  Cross-correlation function between malaria incidence, temperature and rainfall
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(Royal Guard® LLIN (alpha-cypermethrin and pyriprox-
yfen) and Interceptor G2® LLIN (alpha-cypermethrin 
and chlorfenapyr) was associated with a 44% and 23% 
reduction in malaria incidence rates, respectively, com-
pared with ownership of Interceptor® LLIN, a pyrethroid 
(alpha-cypermethrin) only LLIN.

Discussion
This study has highlighted the spatial and temporal vari-
ation of malaria incidence and the impact of meteoro-
logical factors in southern Benin, an area where malaria 
vectors are resistant to pyrethroid. There was a hetero-
geneous variability in malaria incidence on small scales, 
depending on several factors such as soil type, season, 
temperature, and rainfall. Spatial and temporal analy-
sis or the identification of risk factors associated with 
malaria is a key component to better understanding 
malaria transmission and accelerating malaria control 
and elimination [29–32]. Some studies have shown the 
importance and impact of fine-scale results in inform-
ing national and local programme decisions regarding 
the control of waterborne, foodborne, vector-borne and 
other diseases [33, 34].

The study revealed a spatio-temporal variation in the 
distribution of malaria case hotspots. This variation 
depended on the season, or the type of bed net used. This 
suggests that malaria transmission is heterogeneous and 
confirms the findings that have identified a relationship 
between variation in malaria prevalence and use of mos-
quito nets (less than 17% malaria prevalence with insecti-
cide-treated mosquito nets compared with no nets) and 
seasonal variation [35–39].

Meteorological factors (rainfall and temperature) 
had influenced malaria incidence. This finding has also 
been observed in many West and East African countries 

[40–43] where climatic conditions play a key role in dis-
ease transmission dynamics. This study also showed a 
negative significant effect of mean monthly temperature 
on malaria cases, which is consistent with a study con-
ducted in Asembo-Siaya County, Kenya [44]. This could 
be due to increased mosquito mortality or reduced bit-
ing activity at extreme temperatures. These observations 
underline the importance of climatic factors in the spread 
of malaria and confirm their central role in modulating 
epidemiological dynamics. According to previous stud-
ies, rainfall and temperature play a crucial role in the 
spread of malaria vectors [45]. Above a certain thresh-
old, they favour or hinder the reproduction of Anopheles 
mosquitoes, the vector of malaria transmission [46–48], 
as well as the developmental environment for larvae, the 
incubation period for parasites and the survival of mos-
quitoes [49, 50].

In this study, a negative effect of mean monthly tem-
perature, suggesting that above a certain threshold, high 
temperatures can become unfavorable for malaria trans-
mission. This can be explained by a reduction in mos-
quito survival or a too-rapid acceleration of the parasite’s 
development cycle, making transmission less efficient.

In addition to meteorological data, other factors can 
influence the risk of malaria transmission, such as the 
geography of the regions (altitude), seasonal variations 
(rainy or dry season), the environment (land cover), the 
standard of living and the type of bed nets. The results 
of study have confirmed the impact of these differ-
ent factors on the malaria incidence. The effect of the 
average altitude of the houses where the children in 
the cohort live on the incidence of malaria is shown by 
studies conducted in northwestern Ethiopia and West 
Africa [51–53] where higher altitudes are associated with 
reduced malaria transmission. This is because Anopheles 

Table 2  Factors associated with malaria incidence in cohort children living in the Cove Zagnanado and Ouinhi (CoZO) health area, 
Benin, 2020–2022

HH: Household; SL: Standard of living, Py-PPF: pyrethroid-pyriproxyfen; Py-CFP: pyrethroid-chlorfenapyr

Variables Univariate analysis Multivariate analysis

IRR (IC 95%) P-value IRR* (IC 95%) P-value

Soil type Medium fine Reference Reference

Fine 0.78 (0.61–1) 0.048 0.54 (0.39–0.75) p < 0.001

Standard of living  < 50% HH have a high SL Reference Reference

 > 50% HH have a high SL 0.80 (0.62–1.04) 0.094 0.91 (0.70–1.20) 0.516

Study LLIN Standard-LLIN Reference Reference

Py-PPF LLIN 0.81 (0.62–1.07) 0.15 0.77 (0.60–1) 0.048

Py-CFP LLIN 0.54 (0.42–0.70) p < 0.001 0.56 (0.45–0.71) p < 0.001

Temperature (°) 0.69 (0.66–0.73) p < 0.001 0.91 (0.84—0.98) 0.013

Rainfall (mm) 1.14 (1.12–1.15) p < 0.001 1.09 (1.05–1.12) P < 0.001

Altitude of Household 1 (1 − 1) 0.6 1 (0.99–1) P < 0.001
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mosquitoes, the vectors of malaria, are less likely to sur-
vive and reproduce at higher altitudes due to lower tem-
peratures and less favourable conditions. Environmental 
factors such as land cover and land use have a significant 
impact on the density and geographical distribution of 
malaria vectors.

No correlation was observed between living standards 
and malaria incidence, consistent with findings by [54, 
55]. This result may be explained by the number of living 
standard classes we considered after our principal com-
ponent analysis or by attributing the modal standard of 
living to the cluster, rather than an individual assessment 
of the components associated with malaria incidence. 
Modal allocation can lead to a loss of information, as it 
does not take into account the full distribution of living 
standards within clusters. Consequently, potential asso-
ciations between specific living standards and malaria 
incidence may be overlooked. The previously cited stud-
ies may have used different approaches to measure and 
classify living standards, which could explain the diver-
gent results. Standard of living may be more strongly cor-
related with access to health care or preventive measures, 
which is not necessarily the case in our study area as our 
children are followed up at home during the study period. 
Differences in living standards do not translate into sig-
nificant differences in access to mosquito nets or anti-
malarial treatment. However, housing conditions, such 
as the quality of dwellings and the presence of window 
screens, may also influence exposure to mosquito bites.

The use of insecticide-treated mosquito nets is one 
of the most effective interventions for reducing malaria 
transmission. The results confirmed that the type of 
net used had a significant impact on malaria incidence. 
Long-acting insecticide-treated nets (LLINs) are par-
ticularly effective in reducing mosquito bites and disease 
transmission. However, the effectiveness of nets also 
depends on their correct and regular use by the popu-
lation. Awareness campaigns are therefore essential to 
maximize their impact.

The main limitation of our study is the lack of entomo-
logical data (collected at the local level) that could con-
firm and highlight the interactions between entomology, 
epidemiology, climatology and meteorology to better 
explain the variation in malaria incidence. Another limi-
tation of this research is the failure to consider confound-
ing factors such as human behaviour, including effective 
net use score, distance from water points to cluster, or 
malaria knowledge, which could affect malaria incidence.

Conclusion
Knowledge of the distribution of malaria incidence rates 
at fine scales is essential for control interventions. The 
use of new technologies such as remote sensing (satellite 

imagery) and geographic information systems is enabling 
a better understanding of the environmental, meteoro-
logical and geographical factors that influence the distri-
bution of vector-borne diseases. This study has enabled 
us to identify the factors associated with transmission 
risk and the epidemiological areas most at risk from 
malaria. Application of new tools such as remote sensing 
and GIS may improve malaria control strategies and bet-
ter target intervention areas. The role of the environment 
and human behaviour is crucial in determining suscep-
tibility to malaria transmission or vector-borne diseases.
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