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Abstract 

Background This work investigated the future (2021–2050) impact of Climate Change on Malaria Prevalence 
in the Upper River Region of The Gambia under two representative concentration pathways, RCP4.5 and RCP8.5, com‑
paring it with the observed evaluation period of 2011–2022.

Methods The observed climatic variable data used was obtained from the Department of Water Resources 
and the corresponding malaria cases from the archive of the primary Health database, Banjul, The Gambia.  Pro‑
jected monthly temperature, precipitation, and relative humidity were downloaded from the coordinated Regional 
downscaling experiment (CORDEX) stimulation of the Rossby Centre Regional Atmospheric regional climate (RCA4). 
The dataset spans the decades from 2021 to 2050, providing insight into future climatic and epidemiological trends. 
Gradient Boost Machine Learning algorithm was utilized for the malaria projection both in the population below 5 
and above five years.

Results The result revealed an increase in malaria incidence under RCP4.5 and RCP8.5 climatic scenarios for both age 
categories with a clear indication in the population above five years.

Discussion and conclusion The result pictures how climate change will impact malaria under RCP4.5 and RCP8.5 
emission scenarios in the region and also clearly reveals that the upper river region of the Gambia population is at risk 
of malaria infection, thus, a strategic and robust intervention scheme is highly solicited.
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Background
The change in climatic conditions that occurred dur-
ing the end of the  Ice Age, leading to the era of global 
warming around 100,000 years ago, led to the acquisition 

of Plasmodium falciparum from gorillas in Africa, the 
spread of humans as well as parasites [1]. After the period 
known as the Ice Age, temperatures began to increase, 
and the period saw an increasing introduction of agri-
culture and the adaptation of the Anopheles mosquito, 
particularly in sub-Saharan Africa (SSA) due to the popu-
lation density of human settlements. In this modern era 
of anthropogenic global warming driven by the burning 
of fossil fuel and secondary deforestation [2], there is a 
threat to expand the potential range and overall burden 
of malaria [3]. The parasite and the vector life cycles are 
temperature and rainfall-dependent and thus can be 
restricted by climate to the globe’s warmer latitude and 
altitude ranges [1]. An increasingly warmer and humid 
environment has encouraged malaria, presently one of 
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the most dangerous infectious diseases in SSA [4], along 
with climatic variation having a  direct impact on the 
epidemiology of many vector diseases [5]. Thus, many 
attempts have been made to understand the historical 
development and transmission of the  Anopheles para-
site and its associated risk to humans [6, 7], as the dis-
covery of avian malaria transmission by Ronald Ross and 
the  human malaria parasite by Alphonse Laveran, and 
Battista Grassi [8], respectively, paved the way.

Climate change has already played a vital role in 
malaria dynamics and distribution, but the association 
pattern depends on the form of climate change and the 
pathogen-host system [9]. According to the IPCC WGII 
Sixth Assessment Report, the distribution and prevalence 
of malaria are influenced by rising temperatures and 
changing rainfall patterns (high confidence) [4, 10], and 
SSA has an ideal climatic condition for endemic malaria 
transmission [11]. Central Africa, some of the Southern 
Coast of West Africa, and the East of the African coast 
have the right climatic conditions for malaria transmis-
sion [11]. Projection on the influence of climate change 
on malaria estimated an increase in the population at risk 
of 1.6 million by 2030 and 1.8 million by 2050 [12]. Under 
RCP4.5 (moderate) and RCP8.5 (worst) climatic scenar-
ios malaria is projected to increase in most West African 
countries [13–15] if an effective and adequate interven-
tion scheme is not put in place as poor health care and 
health infrastructure is rarely climate-resilient could 
further increased malaria risk in SSA, in addition to the 
resistance of malaria vectors to insecticides [4].

Some elementary modeling has also proven that 
the increase in climatic conditions will accelerate the 
transmission rates of mosquito-borne disease [16–19] 
and widen its geographical distribution, leading to an 
increase in malaria prevalence even in current endemic 
areas [20–22]. Changes in climatic variables, most espe-
cially changes in average temperature, will most likely 
cause a proliferation of the malaria vector at higher alti-
tudes, thereby resulting in an increase in malaria trans-
mission in areas previously unaffected [4, 23]. At lower 
altitudes where malaria is already a problem, warmer 
temperatures will change the parasitic life cycle in a mos-
quito, enabling it to develop more quickly and increase 
transmission, thus having implications on the disease 
burden [4, 23–25].

Malaria remains endemic in the Upper River Region 
of The Gambia despite the combined efforts by the gov-
ernmental and non-governmental health parastatals 
in the region, The Gambian population is still at risk 
of all-around malaria transmission,  and malaria cases 
have progressively increased from 52,767 in 2019 to 
72,301 in 2020, 74,089 in 2021, and 108,506 in 2022 
[26], simultaneously with reported death from 41 in 

2015 to 62 in 2022 [26]. The upper river region has the 
highest disease burden than any other region in the 
country [27, 28], with children under five being more 
vulnerable to the disease condition [29, 30]. The actual 
malaria cases are mostly higher than the reported cases 
since the private health facilities and home treatment of 
the infection with the use of both orthodox and tradi-
tional medicine are not recorded.

Climatic conditions, with other environmental and 
socioeconomic factors, may have contributed to main-
taining residual transmission in the Region. Extreme 
temperatures, as the yearly average temperature of the 
region (31.85 °C) is 2.27% higher than other regions in 
the Gambia [31]. Improper drainage systems, rice pro-
duction, flooding, increased outdoor biting in response 
to weather conditions [30], a limited number of com-
munity health workers, a weak health system, poverty, 
and increased insecticide resistance [29].

The objective of this study is to predict future malaria 
prevalence in the URR of The Gambia under the RCP4.5 
and RCP8.5 climate scenarios using machine learning 
models because of its peculiarity in modeling complex 
and non-linear relationships between climate variables 
and health outcomes, offering significant advantages 
over traditional statistical methods. Similar studies 
have adopted one or more of these machine learn-
ing algorithms: Gradient Bosting, Linear Regression, 
Random Forest, and Support Vector [2, 15, 32–34], as 
they are mostly used in solving regression problems 
in supervised machine learning to predict a desirable 
outcome.

Methods
Study area
Upper River Region of The Gambia
The study was conducted in the Upper River Region 
(URR) of The Gambia (URR). The region is the second 
largest town among the six regions in The Gambia, with 
a land mass of about 2000 sq km and a population den-
sity of 116/km2 [35] and geographical coordinates of 13° 
19′ 0″ N and 14° 13′ 0″ N [36]. Most regions in The 
Gambia, including the URR, lie in the Tropical wet and 
dry or savanna  climate zone, which has a distinct long 
dry season and a short rainy season [36, 37]. The esti-
mated annual rainfall is between 800 and 1200 mm, and 
the average number of rainy days ranges from 54  days 
in Banjul to 31 days in URR [36]. In the dry season, the 
highest average temperature is between 33.22  °C and 
42.42  °C, while in the wet season, the lowest average is 
between 19.48 °C and 27.99 °C, a conducive temperature 
that supports most of the life cycle of malaria vector and 
parasite transmission [5, 21] (Fig. 1).
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Data collection
This study was conducted with a combination of two data 
sets: climatic data and clinical malaria profiles. Monthly 
meteorological data (temperature, rainfall, and relative 
humidity) from the period of 12 years (2011–2022) was 
obtained from the archives of the Department of Water 
Resources Banjul, The Gambia, on June 2, 2023. The 
data was collected manually by the trained staff of the 
department. The corresponding monthly malaria data 
was obtained from the health database. A retrospective 
medical record review was conducted for all the health 
centers with proper malaria screening facilities in each 
health district in the region. The records were summed at 
the malaria control department, Kanifing, and National 
Health Service Kotu, The Gambia, where the full data 
set was obtained on June 30, 2023. Ethical approval was 
obtained from the medical school, the University of The 
Gambia, on May 24, 2023. All the malaria cases pre-
sented to all the hospitals in the region from 2011–2022 
were included in the study. The malaria cases were fur-
ther categorized by two age groups, under five years and 
above five years, to predict the risk of malaria associated 
with each group. The incidence of malaria was recorded 

per month and compared with corresponding climatic 
variables; maximum and minimum temperature, rainfall, 
and humidity.

Data processing
Both the meteorological and malaria data were cleaned to 
account for outlier or missing data to ensure the datasets’ 
integrity and reliability. To enhance data quality, outliers 
were removed using a standard deviation technique, with 
lower limit and upper limit given as follows:

µ and σ are the mean and the standard deviation of the 
data, respectively, and k is a predefined threshold, com-
monly set to 3. Any data point that falls outside the range 
[Lower Bound, Upper Bound] is considered an outlier 
and removed [38].

Monthly climatic variables—maximum tempera-
ture, minimum temperature, relative humidity, rainfall, 
and corresponding malaria incidence were first used 

Lower Bound = µ− k× σ

Upper Bound = µ+ k× σ

Fig. 1 Study area: Upper River Region of The Gambia
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to choose the best machine learning algorithm suitable 
for the prediction. Monthly climatic variables and cor-
responding malaria incidence were first used to train 
and test four Machine Learning models used in solving 
regression problems, including the Linear Regression 
model (LiR), Support Vector Machine model (SVM), 
Random Forest model (RF), and Gradient Boosting (GB) 
to choose the best one suitable for the prediction. Sec-
ondly, data from climatic simulation prediction mod-
els: Model for Interdisciplinary Research on Climate 
(MIROC), Commonwealth Scientific and Industrial 
Research Organisation (CSIRO), and the  National Cen-
tre for Meteorological Research (CNRM) were incorpo-
rated with the chosen ML algorithm for prediction under 
RCP4.5 and RCP8.5 from 2021 to 2050. R Studio environ-
ment and Python were the tools used for the data analysis 
and model implementation.

Furthermore, Earth System models (ESMs): MIROC, 
CSIRO, and CNRM, were used to predict the future inci-
dence of malaria in the region. ESMs integrate the inter-
action of land, sea ice, ocean, atmosphere, and biosphere 
to estimate the state of global and regional climate under 
a wide range of conditions [39, 40]. The model resolution 
and grid system are chosen independently for each com-
ponent, and time integration proceeds independently.

The dataset for the analysis comprises climate scenario 
predictions under various Representative Concentration 
Pathways (RCPs). The two RCPs represented include RCP 
4.5, a moderate emission scenario where greenhouse gas 
emissions peak around 2040 and then decline, and RCP 
8.5, a high emission scenario reflecting continued growth 
in emissions throughout the century. The projected 
satellite data were downloaded from the coordinated 
Regional downscaling experiment (CORDEX) simulation 
of the Rossby Centre Regional Atmospheric regional cli-
mate (RCA4). The model has a few limitations, just like 
most climate models, such as uncertainty in the future 
trajectory of greenhouse gas emissions and limitations 
in capturing short-term natural variability. A study using 
CORDEX-Africa indicated that projected precipitation 
over Africa is associated with uncertainties, which could 
be attributed to model uncertainty and internal vari-
ability [41]. However, the model simulation depicts high-
level accuracy for forecasting as it has been used widely 
by scholars in modeling and projecting future malaria 
risk [13, 15].

The dataset spans the decades from 2021 to 2050, 
providing insight into future climatic and epidemiologi-
cal trends. Each dataset combination includes MIROC/
RCP4.5, CNRM/RCP4.5, CSIRO/RCP4.5, MIROC/
RCP8.5, CNRM/8.5, and CSIRO/8.5. Attributes include 
year and month as columns for temporal identification 
and climatic variables: minimum temperature, maximum 

temperature, humidity, and rainfall. The data also pro-
vides the predicted number of malaria cases, derived 
using climatic input variables and machine learning 
models trained on historical data.

Download link: (https:// esgf- data. dkrz. de/ proje cts/ 
esgf- dkrz/)

Project: CORDEX
Domain > AFR-44
Driving Model: MIROC, CSIRO, CNRM
Experiment: rcp45. Rcp85
Experiment family: RCP
RCM Name: RCA4
RCM Version: v1
Time–frequency: Monthly
Variables: relative humidity, maximum and minimum 

temperature, precipitation
Coordinates: geographical coordinates are 13° 19′ 0″ N 

and 14° 13′ 0″ W.

Development of machine learning model
Machine learning was used to forecast the prevalence of 
malaria in the region over the 2021–2050 period under 
two different climatic scenarios, RCP4.5 and RCP8.5. 
Machine learning is a subset of artificial learning that 
focuses on using various self-learning algorithms that 
derive knowledge from data to predict outcomes [34]. 
ML involves processes and algorithms that can mimic 
human intelligence, which includes learning, perception, 
and problem-solving. The output of ML is algorithmic 
models that are exceptionally capable of handling intri-
cate issues with a substantial amount of data inputs and 
outputs [42]. Although it has been historically linked to 
large datasets [42], recent applications [15, 33] show that 
it can effectively extract insights from smaller datasets. 
This versatility makes machine learning a useful tool in 
healthcare influencing disease outlook, prediction, and 
important activities. The fundaments on which the mod-
els are built are often data collection, parameterization, 
and model learning/ validation [34]. The observable data-
set was split into training and testing subsets, with the 
training set comprising 83.5% of the data and the testing 
set 16.5%. Stratified sampling ensures that the distribu-
tion of malaria cases is maintained across both subsets. 
Several machine learning algorithms were evaluated, 
including a Linear Regression model (LiR), a Support 
Vector Machine model (SVM), a Random Forest model 
(RF), and a Gradient Boosting (GB). Hyperparameter 
tuning was performed for all models to maximize predic-
tive accuracy, using a Grid Search algorithm [43].

To evaluate the models, performance metrics including 
Mean Absolute Error (MAE), Mean Bias Error (MBE), 
Root Mean Squared Error (RMSE), and RSquared  (R2) 
were used. These metrics allowed for model comparison 

https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
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and thus selecting the best-fitting algorithm for future 
prediction. Also, a tenfold cross-validation approach was 
employed to ensure robustness, reducing the risk of over-
fitting and providing a reliable performance estimate. The 
model achieves a cross-validation mean  R2 score of 0.816, 
indicating strong predictive power.

Gradient Boosting (GB) was selected, as the error dif-
ference between the observed data and predicted values 
in both the two age groups is the lowest when compared 
with the other three models and with the highest 
R-squared closer to 1. Gradient Boosting (GB) is further 
known for its ability to join weaker regression algorithms 
in a sequence to learn from the error of other models, 
thus boosting its capacity and accuracy for prediction 
[32]. Their mathematical formulae are given in Eqs. 1–4.

where  Pi is the predicted value,  Ai is the actual value, and 
n is the sample size.
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,

The RMSE measures the average error in predictions 
as a percentage, with lower values indicating better accu-
racy. MAE measures the average magnitude of percent-
age errors, regardless of direction, and lower values again 
indicate better performance. MBE reflects the average 
bias in predictions, where positive values suggest over-
estimation and negative values suggest underestimation. 
R-squared indicates the proportion of variance explained 
by the model, with higher values suggesting a better fit. In 
other words, R-square (Coefficient Determination) shows 
how well the model fits with the data or the accuracy of 
the model from 0 to 1. If the data fits well, the R-square 
will be 1 or close to 1.

Results
Prediction of incidence of malaria in the region under RCP 
4.5 and 8.5 climatic scenarios using machine learning 
model
This section predicted the incidence of malaria from 
the period of 12 years (2011–2022) first by determining 
the machine learning algorithms suitable for the analy-
sis, after which three climatic simulation models that 
incorporated all the three observed climatic variables 
(MIROC, CNRM, CSIRO) under moderate (RCP4.5) and 
worst case (RCP8.5) climatic scenarios over 2021–2030, 
2031–2040, 2041–2050 period.

Figures  2 and 3, which represent the testing period, 
compare actual values in confirmed malaria cases for 
under and above five years, respectively, with predicted 
values using different machine learning models. Then, 
Figs. 4 and 5 reveal the most suitable model for the analy-
sis with the help of their statistical metrics. In general, all 
models present some discrepancies in predicting malaria 

Fig. 2 Comparison between model predictions and actual data for children under five years old
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cases, with some differences in actual/observed data and 
predictions. However, random forest and gradient boost-
ing seem more suitable for malaria case prediction in 
both age groups, as highlighted in the metrics shown in 
Figs. 4 and 5.

For the "Under 5  years" age group, Linear Regres-
sion (LiR) shows the highest RMSE (117.25%) and 
MAE (93.98%) with an R-squared of 0.35, making it 
the worst-performing model. The high positive MBE 
(46.08%) indicates a consistent overestimation of malaria 

Fig. 3 Comparison between model predictions and actual data for the above five years

Fig. 4 Performance metrics for predicting malaria cases in children under 5 years
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cases. Support Vector Regression (SVR) improves upon 
LiR, with an RMSE of 107.98%, MAE of 76.18%, and 
an R-squared of 0.45, explaining more variance. MBE 
(10.94%) suggests some overestimation. Random For-
est (RF) performs significantly better with an RMSE of 
69.99% and a MAE of 48.81%. Its R-squared of 0.77 indi-
cates the model explains a large portion of the variance, 
and its MBE (13.88%) shows less bias. Gradient Boosting 
(GB) is the best-performing model in this group, with the 
lowest RMSE (66.12%) and MAE (38.55%), and the high-
est R-squared (0.79), indicating it explains the most vari-
ance. MBE (9.50%) shows a slight overestimation.

For the above-5-years age group, LiR has an RMSE 
of 127.59% and MAE of 89.69%, with an R-squared of 
0.41, still showing poor performance. MBE (7.53%) 
reflects a slight overestimation. SVR shows a higher 
RMSE (141.41%) than in the younger group and a 
lower R-squared (0.28), explaining less variance. MBE 
(− 28.29%) suggests underestimation. RF maintains good 
performance with an RMSE of 71.47%, MAE of 37.68%, 
and a high R-squared of 0.82. Its MBE (− 6.62%) suggests 
a slight underestimation. GB once again performs the 
best, with the lowest RMSE (59.67%) and MAE (36.14%) 
and the highest R-squared (0.87), indicating the best fit. 
MBE (− 9.11%) indicates a slight underestimation.

Overall, GB consistently outperforms the other mod-
els for both age groups, with the lowest error metrics 
(RMSE, MAE) and the highest R-squared values, making 

it the most effective model for predicting malaria cases. 
RF also performs well, especially in the "above 5  years" 
group, with good accuracy and high R-squared values. 
LiR shows the worst performance with the highest errors 
and lower R-squared, indicating that it is not well-suited 
for this task. SVR performs better than LiR but worse 
than RF and GB, especially in the "above 5 years" group. 
Thus, Gradient Boosting (GB) is the most effective model 
for predicting malaria cases in both age groups. This 
model is then chosen for malaria case prediction using 
RCP4.5 and RCP8.5 scenarios.

Prediction of malaria incidence for the above five years 
over 2021–2050 using RCP4.5 and RCP8.5 scenarios
The result of the projection of the incidence of malaria 
built with the Machine Learning Model (Gradient 
Boosting (GB)), under two representative concentra-
tion pathway (RCP) scenarios (RCP4.5 and RCP8.5); 
MIROC/RCP4.5, CNRM/RCP4.5, CSIRO/RCP4.5, 
MIROC/RCP8.5, CNRM/RCP8.5, CSIRO/RCP8.5, in 
the upper river region of the Gambia over the 2021–
2030, 2031–2041 and 2041–2050 periods, revealed an 
overall increase in malaria incidence under the RCP4.5 
and RCP8.5 scenarios. The Representative Concentra-
tion Pathway (RCP) 4.5 described by IPCC is an inter-
mediate or moderate climatic scenario where emissions 
peak around 2040 and start declining. On the other 

Fig. 5 Correlation and performance metrics for predicting malaria cases in the above five years
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hand, RCP8.5 is described as a worst-case climatic sce-
nario where emission continues to rise throughout the 
twenty-first century.

According to the trendline slope, the result in Fig.  6 
revealed that MIROC/RCP4.5, CNRM/RCP4.5, 
and CSIRO/RCP4.5 simulation model is associated 
with  0.17% (1.9965), 0.18% (2.6123), and  0.07% (0.9120) 
increase in malaria incidence respectively, with an aver-
age of 0.14% increase over 2021–2030 under a mod-
erate climate scenario. Then, under the worst climate 
scenario over this same period, MIROC/RCP8.5 pre-
dicted an associated increase of 0.06% (0.5667) in malaria 
incidence, while CNRM/RCP8.5 and CSIRO/RCP8.5 
model revealed 0.06% (1.0347) and 0.14% (1.6486) 
increase, respectively.

The projection of malaria incidence over the 2031–
2040 period under a moderate climate scenario in Fig. 7 
shows an increase of 0.22% (MIROC/RCP4.5; 2.3176), 
0.35% (CNRM/RCP4.5; 3.9441) and 0.19% (CSIRO/
RCP4.5; 3.3532), with an average increase of 0.25%. A 
corresponding increase of 0.20% (2.7827) was seen in 
MIROC/RCP8.5, 0.29% (CNRM/RCP8.5; 3.3761), and 
0.13% (1.4414) in CSIRO/RCP8.5, with an average of 
0.21% in the case for the worst climatic scenario.

Then over the 2041–2050 period under a moder-
ate climate scenario (Fig.  8), the models predicted an 
increase of 0.23% (MIROC/RCP4.5; 2.4488), 0.18% 
(CNRM/RCP4.5; 2.1496), and 0.07% (CSIRO/RCP4.5; 
0.7289), with an average percent increase of 0.16. Addi-
tionally, the result shows an increase of 0.33% (CSIRO/

Fig. 6 Prediction of malaria incidence for the above five in the Upper River Region of the Gambia over 2021–2030

Fig. 7 Malaria incidence prediction for the above five years in the Upper River Region of the Gambia over 2031–2040
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RCP8.5; 3.8044) and 0.26% (2.7702, 2.8930) in both 
MIROC/RCP8.5 and CNRM/RCP8.5, respectively, under 
the worst climatic scenario, having an average of 0.28% 
increase (Fig. 8).

The three climate models projected an increase in 
malaria incidence across the predicted years under the 
two examined climatic scenarios, with a slightly higher 
percentage increase under the moderate climatic sce-
nario (average of 0.14% over 2021–2030; 0.25% over 
2031–2040) than worst climatic scenario (0.09% over 
2021–2030; 0.21% over 2031–2040). Also, the peak of 
the prevalence of malaria is predicted across all models, 
with the magnitude of the increase varying from model 
to model. However, the peak of malaria prevalence is pre-
dominantly predicted around November, with MIROC 
and CSIRO showing the highest prevalence, more in 
RCP8.5.

Prediction of malaria incidence for under‑fives over 2021–
2050 under RCP4.5 and RCP8.5 Scenarios
In the case of malaria incidence for under five years (up 
to five) Fig.  9, the incidence of malaria is predicted to 
decrease by 0.17% (− 0.1703) as stimulated in MIROC/
RCP4.5 and 0.15% (− 0.2181) in CSIRO/RCP4.5 over the 
2021–2030 period, while CNRM/RCP4.5 stimulation 
predicted an increase of 0.23% (0.2977) over the same 
period. The overall outcome of the projection of malaria 
incidence over the 2021 to 2030 period demonstrates an 
average percentage reduction of 0.16% in malaria cases 

for under five years under a moderate climate scenario. 
In the case of the worst-case climatic scenario over the 
same period, CNRM/RCP8.5 and CSIRO/RCP8.5 pre-
dicted an increase of 0.09% (0.0874) and 0.07% (0.1299) 
respectively in the incidence of malaria revealing an aver-
age increase of 0.08% contrasting MIROC/RCP8.5 pre-
diction of 0.06% (0.0812) reduction of malaria incidence 
in the region for under five years (Fig. 9).

Over the 2031 to 2040 period under a moderate cli-
mate scenario, malaria incidence will increase by 0.10% 
(0.1072) and 0.31% (0.3407), as shown in the MIROC 
and CNRM simulation models, respectively (Fig.  10). 
However, the CSIRO/RCP4.5 model contrasts MIROC 
and CNRM, thus predicting a 0.11% (0.1442) reduction 
in malaria cases for children under five over the same 
period. Notwithstanding, the overall prediction suggests 
an approximated average percentage increase of 0.21% in 
malaria cases under five years from 2031 to 2040 under 
a moderate climatic scenario. Malaria incidence pro-
jection under the worst-case climatic scenario over the 
same period demonstrates an increase of 0.11% (0.1125) 
and 0.18% (0.1955) in MIROC/RCP8.5 and CNRM/
RCP8.5 malaria cases, respectively, and approximately 0% 
(0.0009) in CSIRO/RCP8.5, thus, predicting an average 
increase of 0.10% approximately (Fig. 10).

There is a predicted increase in the incidence of 
malaria by 0.07% (0.0562) and 0.08% (0.0879) in the 
MIROC/RCP4.5 and CNRM/RCP4.5 models, respec-
tively, the average approximated at 0.08% over 2041 to 

Fig. 8 Prediction of malaria incidence for the above five in the Upper River Region of the Gambia over 2041–2050
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2050, contrasting 0.26% (− 0.3078) reduction predicted 
by CSIRO/RCP4.5 model (Fig.  11). Furthermore, under 
the worst-case climatic scenario, the incidence of malaria 
in under five years children in the upper river region of 
the Gambia is predicted to increase by 0.26% (MIROC/
RCP8.5; 0.2190), 0.08% (CRNM/RCP8.5; 0.0774) and 
0.31% (CSIRO/RCP8.5; 0.3480), with an average increase 
of 0.21% increase. The results further show variation in 

prevalence across models, with the highest burden seen 
in CNRM and CSIRO models, more under worst-case 
climatic conditions, especially over 2041–2050 (Fig. 11).

Discussion
The earth system models: MIROC, CNRM, and CSIRO 
Climate simulation models predicted an increase in 
malaria cases in both age categories with few exceptions 

Fig. 9 Prediction of malaria incidence for under five in the Upper River Region of the Gambia over 2041–2050

Fig. 10 Prediction of malaria incidence for the under‑five in the Upper River Region of the Gambia over 2041–2050
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over 2021–2030, 2031–2040, and 2041–2050 periods. 
Similarities also exist in RCP4.5 and RCP8.5 with a sub-
stantial malaria prevalence in RCP8.5 than in RCP4.5, 
especially with CSIRO/RCP4.5 in both age categories. 
The increase could result from climatic fluctuation, 
trends in temperature, and precipitation, presenting a 
suitable condition for Anopheles breeding and parasite 
transmission [44]. The climatic change condition deter-
mines the degree of variation and trend of malaria inci-
dence in a region where the disease is already present and 
an area with fewer cases or no cases [44]. In the study 
region, with lower altitudes where malaria is already a 
problem, warmer temperatures will change the para-
sitic life cycle in a mosquito, enabling it to develop more 
quickly and increase transmission, thus having implica-
tions on the disease burden [4, 23–25].

The increased prevalence of malaria in both scenarios, 
with a slight percentage average increase in RCP4.5 than 
RCP8.5 in most cases (average of 0.14% (RCP4.5), 0.09% 
(RCP8.5) over 2021–2030, and 0.25% (RCP4.5) and 0.21% 
(RCP8.5) over 2031–2040, could mostly suggest a corre-
lation with temperature, as both the vector carrier para-
site and the parasite itself are temperature dependent 
with malaria transmission restricted as a certain range 
of temperature between 18  °C to 32  °C [45, 46]. It sim-
ply implies that when the temperature of the region is 
stretched beyond the malaria threshold in the case of the 
worst climate scenario, the risk of malaria will be consid-
erably influenced by other climatic factors such as rain-
fall and relative humidity [14, 17]. Increased humidity is 
suitable for mosquito vectors to find hosts in a cooler or 
dry season, when surface water becomes sparse, limiting 

the laying of eggs and reducing adult mosquitoes [47]. 
Relative humidity affects the mating, longevity, disper-
sal, blood-feeding behavior, and oviposition of mosqui-
toes [48, 49]; thus, relative humidity equal to or greater 
than 60% encourages the breeding and proliferation of 
Plasmodium parasites, while humidity less than 60% may 
not lead to increase in the population of malaria parasites 
[14, 50]. Rainfall also exacerbates the flood activity, which 
in turn increases the moisture of the region and pro-
motes the optimum condition for vector reproduction, 
thus increasing prevalence [13].

The risk of malaria in the region could also be exacer-
bated due to limited health infrastructure, unregulated 
land use in flood-prone areas, and inadequate emergency 
response capability [51, 52].

The development of resistance to a wide range of 
drugs and insecticides used for treatment and preven-
tive options [29] could further result in the situation. The 
population’s effort towards prevention and treatment 
might have been altered either through limited support 
from the government, climate change-induced pov-
erty limiting their adaptation strategies, or reluctance to 
engage in good preventive and treatment options.

Climate change will indeed increase the risk of 
malaria infection in the study area. Directly, it can lead 
to unconsciousness, anaemia, and death; indirectly, 
it can reduce the income of the household, poverty, 
and absenteeism from school or work. A study carried 
out in Northern Benin by Gbaguidi et  al. [15] shows 
that malaria incidence will increase over 2021–2050 
under scenarios RCP4.5 and RCP8.5, except for the 
2021–2030 period, when the incidence of malaria will 

Fig. 11 Prediction of malaria incidence for the under‑five in the Upper River Region of the Gambia over 2041–2050
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decrease under RCP8.5 due to climate change, and thus 
increase the risk and vulnerability of the population to 
the disease condition. A projection of malaria incidence 
across West Africa under RCP4.5 and RCP8.5 scenarios 
by Fall et al. [14] shows that the prevalence of malaria is 
expected to increase in the southern part of the region. 
The results align with the study findings, in addition to 
the increase in malaria prevalence projected by IPCC 
on some previously unexposed regions of SSA in 2050 
under the current climate change condition [4, 52, 53].

Malaria is predicted to increase more in the case of 
more than five than in those under, thus, being attrib-
uted to the mentioned factors with the inclusion of 
negligence exhibited by most adults toward their 
health. Younger children are more prioritized, and pre-
ventive efforts are being channeled toward them rather 
than the adults in most government intervention ini-
tiatives. This could also contribute to the predicted 
reduction seen over 2021–2030 in under five years in 
the region, thus the administration of chemopreventive 
therapy (SMC) and the use of Long-lasting insecticidal 
nets (LLINs) (13). As it stands now, the government 
of the Gambia is making an effort to address the issue 
of malaria in the region; more adverse effort is needed 
to avert the already predicted increase in malaria inci-
dence and the associated risk across the region.

In conclusion, climate change or changing weather 
conditions tend to increase malaria prevalence in any 
given region due to the sensitivity of malaria-carry vec-
tors and parasites to the changing weather conditions. 
Thus, changes in the pattern of climatic variables in the 
study region under RCP4.5 and RCP8.5 scenarios will 
favor malaria transmission and resultant malaria preva-
lence in the region. The development of an early malaria 
warning system using the Gradient Boost Machine 
Learning algorithm for the region serves as a powerful 
tool in the management of the disease condition through 
strategic malaria intervention planning, as malaria preva-
lence has been projected to increase in both the under-
five and above-five population in almost all the models.

In this context, decision-makers planning public health 
measures in the region and other regions across West 
Africa should find the work highly valuable. Stakehold-
ers might find these findings useful in creating adaptative 
and vector control strategies.

Future studies will combine RCPs, SSPs (Shared Soci-
oeconomic Pathways), and CORDEX downscaling to 
investigate the probability environment of projected 
malaria prevalence across the regions in the Gambia and 
West Africa.
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