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Abstract 

Background  Anopheles kleini is a competent vector mainly observed in the northern, malaria-risk areas of the Repub-
lic of Korea (ROK). In this study, the population genetic structure of An. kleini was analysed for the first time in the ROK 
using the mitochondrial cytochrome c oxidase subunit I (COI) marker.

Methods  The genetic structure of 249 An. kleini was analysed from three statistically analysable regions, each includ-
ing more than five mosquitoes.

Results  Network analysis identified 140 haplotypes organized into three clusters. Cluster II was related to An. 
kleini from eastern Russia and northwestern China. The pairwise genetic distance (FST) values among the popula-
tions showed regional genetic differences between Gangwon-do and Gyeonggi-do. Analysis of molecular variance 
(AMOVA) indicated that individual mosquitoes within the population had a significant influence on the total varia-
tion. The neutrality test, using three methods (Fu’s Fs, Fu, and Li’s D, and Fu and Li’s F), indicated that all values were 
negative, suggesting that An. kleini is an expanding population. Anopheles kleini in Yanggu has a significant difference 
in genetic distance from other regions.

Conclusion  This study provides molecular epidemiologically information for understanding the spatial population 
structure of An. kleini and is helpful for malaria control in the ROK.
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Background
Malaria affects global public health, along with dis-
eases such as acquired immune deficiency syndrome 
(AIDS), tuberculosis, and amoebiasis. Malaria is caused 
by an infection by Plasmodium parasites, transmitted 
to humans via a bite from an infected female Anopheles 
mosquito and requires interactions between the host, 
vector, and parasite [1]. Five species of malaria parasites 

infect humans: Plasmodium falciparum, Plasmodium 
vivax, Plasmodium malariae, Plasmodium ovale, and 
Plasmodium knowlesi [2]. Plasmodium falciparum and 
P. vivax occur in Southeast Asia, while P. knowlesi out-
breaks occur in parts of Malaysia and Indonesia [3]. In 
the Republic of Korea (ROK), P. vivax occurs principally 
in some northern regions (Gangwon-do, Gyeonggi-do, 
and Incheon) facing the border of the Democratic Peo-
ple’s Republic of Korea (DPRK) [4]

Approximately 70 species of the genus Anopheles are 
capable of transmitting malaria worldwide, of which 41 
species are known to be the dominant vector species 
[5]. Eight species of Anopheles mosquitoes (Anopheles 
belenrae, Anopheles kleini, Anopheles koreicus, Anopheles 
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lesteri, Anopheles lindesayi japonicus, Anopheles pullus, 
Anopheles sinensis, and Anopheles sineroides) inhabit 
the ROK, and six species inhabit the DPRK (Anopheles 
anthropophagus, An. belenrae, An. kleini, An. lesteri, An. 
sinensis, and Anopheles yatsushiroensis) [6, 7]. In par-
ticular, An. kleini, which is found in the both countries, 
mainly occurs in malaria-risk areas near the demilita-
rized zone (DMZ) in the ROK [6, 8]. Artificial infection 
experiments confirmed sporozoite infection in An. kleini 
[9, 10]. In field-collected Anopheles mosquitoes, An. 
kleini exhibited a high rate of P. vivax sporozoite infec-
tion; therefore, caution is required as a competent vector 
[11].

Mitochondrial DNA (mtDNA) markers are used to 
study the population structure and genetic diversity 
of various species, including mosquitoes. In Thailand, 
Anopheles minimus was genetically divided into two lin-
eages using cytochrome c oxidase subunit I (COI) and 
cytochrome c oxidase subunit II (COII) [12]. In Kenya, 
the genetic structure and diversity of Anopheles funes-
tus were evaluated using a COII marker [13]. Besides the 
Anopheles mosquitoes, the introduction of Aedes albop-
ictus from abroad was confirmed using a COI marker 
in Japan [14]. Furthermore, there is a study about the 

genetic structures of Cyprinidae (fish), Amblyomma thol-
loni (tick), and Glossina morsitans morsitans (tsetse fly) 
using COI markers in India, Kenya, Zambia, and Malawi 
respectively [15–17].

Despite various studies using mtDNA markers, no 
study has been conducted on the genetic structure of 
An. kleini populations. In a study confirming the genetic 
structure of An. sinensis population in the ROK, An. 
kleini was also collected. However, it was excluded from 
the analysis because it was collected from only one area 
[18]. This study provides a molecular biological under-
standing by analysing the population genotypes of An. 
kleini, which is presumed to be a competent vector of 
malaria in the ROK.

Methods
Mosquito sampling and species identification
Mosquitoes were collected from approximately 17 civil-
ian houses in malaria-risk areas and seven livestock sheds 
in non-risk areas from May to October 2022. A total of 
266 An. kleini were collected only in malaria-risk areas, 
and 249 An. kleini were used in population genetic analy-
sis (Table 1). The mosquitoes were collected using a black 
light trap (Shin-Young Comm. System, Namyangju, ROK) 

Table 1  Geographical information on the sampling sites and sizes (n)

Division Province Sample site Location ID Collection n Analysis n Coordinate

Malaria risk area Gangwon-do Cheorwon CW 3 38°15′49.0ʺN 127°09′51.7ʺE
Chuncheon CC 1 37°57′27.7ʺN 127°43′45.1ʺE
Goseong GS 1 38°32′43.7ʺN 128°23′59.4ʺE
Hwacheon HC 3 38°06′44.6ʺN 127°41′40.4ʺE
Inje IJ 3 38°05′36.6ʺN 128°10′55.3ʺE
Yanggu YG 20 20 38°04′38.4ʺN 128°00′15.9ʺE

Gyeonggi-do Gimpo GP 37°38′56.9ʺN 126°34′54.7ʺE
Paju (Baekyeon-ri) BY 20 20 37°55′08.0ʺN 126°44′03.3ʺE
Paju (Josan-ri) JS 209 209 37°54′37.3ʺN 126°43′53.0ʺE
Paju (Majeong-ri) MJ 3 37°53′29.4ʺN 126°45′28.2ʺE
Uijeongbu UB 37°42′36.2ʺN 127°05′47.3ʺE
Yeoncheon YC 38°11′17.8ʺN 127°06′29.2ʺE

Incheon Ganghwa GH 3 37°47′04.1ʺN 126°16′58.7ʺE
Gyeyang GY 37°34′49.0ʺN 126°44′51.6ʺE
Junggu JG 37°29′42.8ʺN 126°32′15.3ʺE
Ongjin OJ 37°57′28.9ʺN 124°39′52.5ʺE
Seogu SG 37°31′42.6ʺN 126°39′31.7ʺE

Malaria non risk area Busan Gijang GJ 35°11′55.7ʺN 129°12′09.1ʺE
Chungcheongnam-do Yesan YS 36°40′27.5ʺN 126°41′39.4ʺE
Gangwon-do Gangneung GN 37°48′44.5ʺN 128°51′59.9ʺE
Gyeongsangbuk-do Hampyeong HP 35°01′25.8ʺN 126°33′07.1ʺE
Gyeongsangnam-do Jinju JJ 35°09′23.3ʺN 128°07′36.1ʺE
Jeollabuk-do Jeonju JJu 35°48′14.5ʺN 127°11′36.5ʺE
Jeollanam-do Gyeongsan GSa 35°57′22.9ʺN 128°50′13.6ʺE
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in malaria-risk areas and a light-emitting diode (LED) 
trap (Biotrap, Gunpo, ROK) in non-risk areas. Mosquito 
specimens were initially identified using a microscope 
and morphological characteristics. Species identification 
was confirmed using multiplex polymerase chain reaction 
(PCR) assays targeting the internal transcribed spacer 2 
region [19, 20]. Total DNA was extracted using DNAzol 
(Thermo Fisher Scientific, Massachusetts, U.S.A) or the 
automatic nucleic acid extraction equipment QIAamp 96 
DNA QIAcube HT Kit (QIAGEN, Hilden, Germany) fol-
lowing the manufacturer’s protocol.

COI gene amplification
Total DNA extracted from individual mosquitoes was 
used as a template to synthesize the 710 bp of COI gene 
using forward (LCO1490; 5′-GGT​CAA​CAA​ATC​ATA​
AAG​ATA​TTG​G-3′) and reverse (HCO2198; 5′-TAA​ACT​
TCA​GGG​TGA​CCA​AAA​AAT​CA-3′) primers [21]. DNA 
was amplified using AccuPower PCR PreMix (Bioneer, 
Daejeon, Korea). The PCR conditions were as follows: 
initial denaturation at 95 ℃ for 5 min, 40 cycles of dena-
turation at 95 ℃ for 30 s, annealing at 53 ℃ for 30 s, elon-
gation at 72 ℃ for 30  s, and final extension at 72 ℃ for 
10 min. The PCR products were confirmed using a QIAx-
cel capillary electrophoresis system (Qiagen, Hilden, 
Germany), and Sanger sequencing was performed to ana-
lyse the DNA sequences.

Data analysis
The amplified sequence of the COI gene was trimmed 
using DNASTAR Lasergene SeqMan Pro and aligned 
using MEGA 11 software. The sequence characteristics, 
such as the number of haplotypes (H), number of segre-
gating sites (S), average number of nucleotide difference 
(K), average number of mutations per sequence (θ), hap-
lotype diversity (Hd), and nucleotide diversity (Pi), were 
calculated using DnaSP (version 5.10.01) [22]. Median-
joining network of all An. kleini haplotypes were drawn 
using Network 10.2 software [23]. The pairwise genetic 
distance (FST) between populations was confirmed using 
the DnaSP program, and gene flow (Nm) values were 
estimated from the pairwise FST [Nm = (1—FST)/4FST] 
[24]. Analysis of molecular variance (AMOVA) was per-
formed using Arlequin 3.5.2.2 [25]. The neutrality test 
was evaluated with three methods (Fu’s Fs, Fu and Li’s D, 
and Fu and Li’s F) using the DnaSP program [22].

Results
Population sampling
Mosquitoes were collected from 24 locations in the ROK; 
however, 266 An. kleini were identified at only 10 sites, 
which are malaria-risk areas (Table  1). All An. kleini 
samples were confirmed using multiplex PCR assays. 

Only 249 samples from three regions, Baekyeon-ri (BY), 
Josan-ri (JS), and Yanggu (YG), were used for population 
genetic analysis since the sample sizes from these regions 
had more than five individuals (Fig. 1).

Sequence characteristics
The mtDNA COI gene was successfully amplified from 
individual An. kleini. Compared with the sequences from 
a previous study [26–28], 594 bp out of a total of 710 bp 
were analysed. There were 499 conserved and 95 variable 
sites.

The number of segregating sites (S), JS was the high-
est at 85, followed by YG at 48 and BY at 34. The 
average number of nucleotide differences (K) was 
10.41218 ± 1.39397 and the average number of muta-
tions per sequence (θ) was 13.39431 ± 3.05977. Haplo-
type diversity (Hd) was high in all three analysis regions, 
from 0.92105 (YG) to 0.97895 (BY), whereas nucleotide 
diversity (Pi) was low, from 0.01543 (JS) to 0.02006 (YG) 
(Table 2).

Haplotype network analysis
A total of 140 haplotypes were identified in 249 An. kleini 
individuals. The haplotype percentages for each collec-
tion area were BY 85.00% (17/20), YG 75.00% (15/20), 
and JS 56.94% (119/209) (Table  2). There were three 
dominant haplotypes with more than ten individuals: 
H_12 (n = 28), H_2 (n = 25), and H_1 (n = 15). Haplotypes 
with more than two individuals were confirmed as 25 
(17.86%), and the rest were found from only one individ-
ual. Region-specific haplotypes from one individual were 
detected in all three analysis regions but were especially 
abundant in JS.

Three clusters were identified in the COI haplotype 
network and some haplotypes (median vectors) were 
not detected (Fig. 2). Cluster I contained 75 haplotypes, 
including the dominant haplotypes (H_12, H_2, and 
H_1). Furthermore, 59 haplotypes belonged to Cluster 
II and six haplotypes belonged to Cluster III. When all 
haplotypes were compared with the existing foreign ref-
erence sequence, H_101 in Cluster II was identical to the 
Chinese sequence (OP311323), and H_105 was identical 
to the Russian sequence (KC855655).

Genetic structure among population
Pairwise genetic distance (FST) was used to evaluate the 
genetic distance between populations in the analysis 
region. The FST values between YG and BY were 0.08899 
and 0.74900 for JS.

In other words, two groups, Gangwon-do (YG) and 
Paju, Gyeonggi-do (BY and JS), had high genetic diver-
gence and were regionally differentiated [29]. However, 
the genetic distinction of populations was difficult to 
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analyse because the FST value between BY and JS was 
negative, and gene flow (Nm) was not available (Table 3).

AMOVA was analysed by dividing into two groups as 
Gangwon-do (YG) and Gyeonggi-do Paju (BY, JS). As a 
result, “within populations” was noticeably higher than 

“among groups” and “among populations within groups” 
(Table 4), which implies that individuals within a popu-
lation have a substantial influence on the total variation 
than “among groups” and “among populations within 
groups.”

Fig. 1  Anopheles kleini sampling sites in the Republic of Korea (ROK) in 2022. The site names are abbreviated, and the full names and locations are 
listed in Table 1. The sites where An. kleini were collected and marked with blue circles
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Table 2  Sequence characteristics of Anopheles kleini in the three malaria-risk areas

n sample size, H Number of haplotypes, S Number of segregating sites, K Average number of nucleotide difference, θ Average number of mutations per sequence, Hd 
Haplotype diversity, Pi Nucleotide diversity, BY Baekyeon-ri, JS Josan-ri, YG Yanggu

Location ID n H/Percentage S K θ Hd Pi

BY 20 17/85.00 34 10.15789 10.14731 0.97895 0.01710

JS 209 119/56.94 85 9.16286 16.22401 0.97221 0.01543

YG 20 15/75.00 48 11.91579 13.81161 0.92105 0.02006

Fig. 2  The haplotype network of the cytochrome c oxidase subunit I (COI) gene was constructed using Network 10.2. Each circle represents 
a haplotype and its size is proportional to the number of individuals included in the haplotype. Pink, green, and blue represent individuals 
from Baekyeon-ri (BY), Josan-ri (JS), and Yanggu (YG), respectively. White dots (median vectors) represent undetected hypothetical haplotypes. Black 
circles indicate haplotypes with the same sequence as the reference (H_101: OP311323, Heilongjiang, China; H_105: KC855655, Khabarovsk, Russia)
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Neutrality test
The neutrality test was calculated using DnaSP with three 
methods: Fu’s Fs, Fu and Li’s D, and Fu and Li’s F. All data 
showed negative values, suggesting that the population 
was expanding and had many low-frequency mutations 
(Table  5). In particular, strong negative values (P < 0.05) 
of Fu and Li’s D and Fu and Li’s F were identified in the JS 
population, and the neutrality deviation was more sensi-
tive than that in other regions.

Discussion
Population genetics research is useful for understanding 
and predicting the epidemiology of vector-borne diseases 
and provides information on the spatial limits of natural 
populations and the characteristics of gene flow between 
populations [30]. The COI is a highly representative 
marker used to study the genetic diversity of insects, 
including Anopheles mosquitoes [31].

Anopheles kleini belongs to the Hyrcanus group and 
mainly inhabits continental monsoon climates, such as 
far-east Russia and northwest China [26, 28]. In the ROK, 
An. kleini is rarely identified in the southern region, but 
most specimens have been collected near the demili-
tarized zone (DMZ), especially in the northern region 
of Gyeonggi-do [8, 32–34]. In this study, a population 
genetic analysis of An. kleini in the ROK is conducted 
using a mitochondrial COI marker. All An. kleini sam-
ples were collected in malaria-risk areas near the DMZ, 
and regions with less than five individuals were excluded 
from the analysis to facilitate statistical analysis (Table 1). 
The biased collection of An. kleini populations may be 
because of their ecological preference for cool tempera-
tures [35]. Most specimens were collected in Josan-ri 

(JS), the area closest to the Democratic People’s Republic 
of Korea (DPRK).

Haplotype diversity (Hd) and nucleotide diversity (Pi) 
indicate genetic diversity among populations. When ana-
lysing Baekyeon-ri (BY), JS, and Yanggu (YG), we demon-
strated the characteristics of a migratory group with high 
Hd and low Pi. This indicated that An. kleini populations 
recently expanded to a small effective population after 
experiencing a bottleneck [31]. In addition, high levels of 
Hd may occur because of the various environments and 
lifestyles to which An. kleini are exposed during the pro-
cess of adapting to rapid natural development [36].

Three clusters were identified in the COI haplo-
type network of the An. kleini population in the ROK 
of three analysis regions (Fig.  2). Cluster I contained 
three dominant haplotypes (H_12, H_2, and H_1), and 
when compared with the existing reference, H_12 was 
confirmed to have the same sequence as OP150362 in 
the National Center for Biotechnology Information 
(NCBI) database. OP150362 is an An. kleini collected 
in 2021 from the Neutral Nations Supervisory Com-
mission camp (< 10 m from the DMZ) [27]. H_12 had a 
large population size in the network but was not a cen-
tral haplotype. Therefore, H_12 considered a migratory 
group. Cluster II consisted of small haplotypes with 
no more than three individuals. H_101 and H_105 in 
Cluster II had sequences identical to OP311323 from 
China and KC855655 from Russia, respectively [26, 28]. 
In particular, H_101 and H_105 were linked to various 
haplotypes in Cluster II; therefore, many individuals 

Table 3  Pairwise genetic distance (FST) and gene flow (Nm) 
values among populations

BY Baekyeon-ri, JS Josan-ri, YG Yanggu

Nm FST BY JS YG

BY – − 31.50000 2.55930

JS − 0.00800 – 0.08378

YG 0.08899 0.74900 –

Table 4  Analysis of molecular variance (AMOVA) for geographic variation of Anopheles kleini in three malaria-risk areas

Source of variation Degrees of 
freedom

Sum of squares Variance components Percentage of variance 
(%)

F-index

Among groups 1 22.019 0.49755 9.58 0.0958

Among populations 
within groups

1 3.636 -0.02985 -0.57 -0.00636

Within populations 246 1162.638 4.72617 91.00 0.09005

Total 248 1188.293 5.19387 100.00

Table 5  Neutrality test of Anopheles kleini in the three malaria-
risk areas

BY Baekyeon-ri, JS Josan-ri, YG Yanggu
* P < 0.05

Location ID Neutrality tests

Fu’s Fs Fu and Li’s D Fu and Li’s F

BY − 5.29600 − 0.05019 − 0.03960

JS − 130.06000 − 3.25408* − 2.82976*

YG − 2.05300 − 0.40959 − 0.52717
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were presumed to have immigrated. Because of migra-
tory insect pest populations, such as Nilaparvata 
lugens, Sogatella furcifera, and Laodelphax striatellus 
which entered the ROK from China via the jet stream 
[37], the introduction of mosquitoes is also plausible. 
Cluster III had only six haplotypes, most of which were 
identified only in YG (H_78, H_79, H_80, and H_124). 
This supports the genetic structure of the An. kleini 
individuals differed regionally, as the FST value of YG in 
Gangwon-do was distinct by more than 0.05 from both 
BY and JS in Gyeonggi-do (Table 3). These regional dif-
ferences may have been influenced by environmental 
factors, such as ecological isolation since the YG is sur-
rounded by mountain ranges.

In total, 140 COI haplotypes were identified in 249 
An. kleini and most haplotypes had only one individual. 
Based on the results of the AMOVA, individuals within 
the populations had a significant impact on the overall 
variation of the population (Table  4). However, if there 
are too many low-frequency mutations, the genetic char-
acteristics of population expansion may persist for a long 
time, obscuring the genetic structure of the true ecologi-
cal populations that exist in nature [38].

Additionally, in the neutrality test using the three 
methods, all values were negative (Table  5), confirming 
that An. kleini populations are expanding [39]. The high 
number of haplotypes and population expansion sug-
gested the excellent adaptability of An. kleini, which may 
improve the vector’s ability to respond to ecological envi-
ronments and maintain malaria transmission [13].

Plasmodium vivax was detected in An. kleini by tar-
geting the small subunit ribosomal RNA gene [40]; how-
ever, all samples were negative in this study. According 
to the 2023 malaria vector mosquito surveillance by the 
Korea Disease Control and Prevention Agency, P. vivax 
was detected in Anopheles mosquitoes collected from 
JS [41]. Based on internal data, P. vivax was consistently 
confirmed in Anopheles kleini was collected using a high-
altitude insect net installed near the DMZ in 2024. Most 
belonged to Cluster II, which was related to northern 
populations in the haplotype network. Since approxi-
mately 2,136 patients have identified in the DPRK in 2022 
[3], P. vivax-positive An. kleini likely migrated from the 
north.

To our knowledge, this is the first study to analyse An. 
kleini population genetics at malaria-risk areas in the 
ROK. Although this study is limited by the fact that the 
population is biased toward one region (JS) and the pop-
ulation size is different, the data distinguishes between 
populations of An. kleini using regional characteristic 
analysis. Following the continuous surveillance of Anoph-
eles mosquitoes as vectors, the accumulation of data 
related to the genetic structure can be used to understand 

the characteristics of An. kleini and malaria eradication 
in the ROK.

Conclusions
This study analysed the population genetic structure 
of An. kleini for the first time in the ROK based on the 
COI gene. Anopheles kleini population was divided into 
three clusters and showed characteristics of a migratory 
population. The An. kleini population is expanding and is 
estimated to be closely related to the northern reference 
sequences. Such information provides insight into the 
malaria vector and can be provided as basic information 
for malaria control.
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