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Abstract 

Background Malaria-endemic countries are increasingly adopting data-driven risk stratification, often at district 
or higher regional levels, to guide their intervention strategies. The data typically comes from population-level surveys 
collected by rapid diagnostic tests (RDTs), which unfortunately perform poorly in low transmission settings. Here, 
a high-resolution survey of Plasmodium falciparum prevalence rate (PfPR) was conducted in two Tanzanian districts 
using rapid diagnostic tests (RDTs), microscopy, and quantitative polymerase chain reaction (qPCR) assays, enabling 
the comparison of fine-scale strata derived from these different diagnostic methods.

Methods A cross-sectional survey was conducted in 35 villages in Ulanga and Kilombero districts, south-eastern 
Tanzania between 2022 and 2023. A total of 7,628 individuals were screened using RDTs (SD-BIOLINE) and microscopy, 
with two thirds of the samples further analysed by qPCR. The data was used to categorize each district and village 
as having very low (PfPR < 1%), low (1%≤PfPR < 5%), moderate (5%≤PfPR < 30%), or high (PfPR ≥ 30%) parasite preva-
lence. A generalized linear mixed model was used to analyse infection risk factors. Other metrics, including posi-
tive predictive value (PPV), sensitivity, specificity, parasite densities, and Kappa statistics were computed for RDTs 
or microscopy and compared to qPCR as reference.

Results Significant fine-scale variations in malaria risk were observed within and between the districts, with vil-
lage prevalence ranging from 0% to > 50%. Prevalence varied by testing method: Kilombero was low risk by RDTs 
(PfPR = 3%) and microscopy (PfPR = 2%) but moderate by qPCR (PfPR = 9%); Ulanga was high risk by RDTs (PfPR = 39%) 
and qPCR (PfPR = 54%) but moderate by microscopy (PfPR = 26%). RDTs and microscopy classified majority of the 35 
villages as very low to low risk (18–21 villages). In contrast, qPCR classified most villages as moderate to high risk (29 

†Francesco Baldini, Simon A. Babayan and Fredros Okumu are equally co-
supervised this work.

*Correspondence:
Issa H. Mshani
imshani@ihi.or.tz
Fredros Okumu
fredros@ihi.or.tz
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-024-05191-8&domain=pdf


Page 2 of 22Mshani et al. Malaria Journal          (2024) 23:376 

villages). Using qPCR as the reference, PPV for RDTs and microscopy ranged from as low as < 20% in very low transmis-
sion villages to > 80% in moderate and high transmission villages. Sensitivity was 62% for RDTs and 41% for micros-
copy; specificity was 93% and 96%, respectively. Kappa values were 0.7 for RDTs and 0.5 for microscopy. School-age 
children (5–15 years) had higher malaria prevalence and parasite densities than adults (P < 0.001). High-prevalence 
villages also had higher parasite densities (Spearman r = 0.77, P < 0.001 for qPCR; r = 0.55, P = 0.003 for microscopy).

Conclusion This study highlights significant fine-scale variability in malaria burden within and between 
the study districts and emphasizes the variable performance of the testing methods when stratifying risk at local 
scales. While RDTs and microscopy were effective in high-transmission areas, they performed poorly in low-transmis-
sion settings; and classified most villages as very low or low risk. In contrast, qPCR classified most villages as moder-
ate or high risk. The findings emphasize that, where precise mapping and effective targeting of malaria are required 
in localized settings, tests must be both operationally feasible and highly sensitive. Furthermore, when planning 
microstratification efforts to guide local control measures, it is crucial to carefully consider both the strengths and limi-
tations of the available data and the testing methods employed.

Keywords Malaria, Fine scale stratifications, Prevalence rate, Rapid diagnostic tests (RDTs), Polymerase chain reaction 
(PCR), Microscopy, Population surveys, Micro-stratification, Malaria screening

Background
Precise mapping of malaria prevalence is crucial for the 
eventual elimination of the disease from different locali-
ties. In line with World Health Organization (WHO) 
guidelines, National Malaria Control Programmes 
(NMCPs) in Africa are increasingly adopting data-
driven stratification of malaria burden, in most cases 
at either district or higher regional levels [1–3]. These 
stratifications involve assessing risk levels and burden in 
geographical areas at the subnational level (e.g. zones, 
regions, and districts) [2, 4, 5], and can include fine-scale 
mapping (down to wards and villages levels) as coun-
tries progress towards elimination [6–8]. The data for 
such stratification may come from health facilities, active 
malaria screening during population surveys, or proxy 
data sources such as antenatal care clinic visits [6, 9, 10].

When developing country-level malaria strategies, the 
prevalence of malaria, representing the proportion of 
confirmed positive cases of Plasmodium falciparum (or 
other Plasmodium sp.) among all individuals tested [11, 
12], can be classified into various transmission categories. 
The WHO has previously used the following cutoff points 
for malaria endemicities: below 1% as very low, 1–10% as 
low, 10–35% as moderate, and above 35% as high burden 
malaria stratum [12]. Different NMCPs may adapt these 
criteria with slight adjustments based on local epidemio-
logical insights. For instance, some countries, including 
Tanzania and Kenya, have used the parasite prevalence 
data to categorize their geographic zones as either very 
low risk (PfPR < 1%), low risk (1% ≤ PfPR < 5%), moderate 
risk (5% ≤ PfPR < 30%), or high risk strata (PfPR ≥ 30%) 
[2, 13]. Another measure that can be used for generating 
these strata is the annual parasite incidence (API), which 
is the number of diagnostically confirmed malaria cases 
per 1000 individuals per year and is usually obtained 

from health facilities data [12, 14]. API estimates are sim-
pler to generate because they rely on facility-level data, 
but do not account for sub-clinical malaria infections, 
which can also contribute to transmission and impede 
malaria elimination effort [15].

National malaria programs usually rely on different 
actively and passively collected data to measure malaria 
burden and monitor the effectiveness of control meas-
ures [16–18]. For instance, Tanzania employs multiple 
platforms, including the District Health Information 
software (DHIS2) populated with data from routine 
health facility visits, the Malaria Indicator Surveys (MIS) 
and Tanzania Demographic and Health Surveys (TDHS), 
which are done every 4–5 years through household sur-
veys, and the school malaria parasite surveillance (SMPS) 
targeting kids aged 5–16 years [2, 19–21]. A common 
feature of these established systems is that most rely pri-
marily on rapid diagnostic tests (RDTs) and microscopy 
[13, 22, 23], though samples are sometime also preserved 
for PCR assays.

Microscopy, long used in malaria diagnosis, can quan-
tify parasite loads and identify different Plasmodium spe-
cies, which are essential for precise treatment choices 
[24, 25]. However, its effectiveness depends significantly 
on the skill and experience of the microscopist, making it 
unreliable in some contexts, and it can miss a substantial 
number of true infections due to sub-optimal accuracy 
[26–28]. In contrast, RDTs offer a consistent and user-
friendly option, enabling quick, on-site diagnosis with-
out specialized skills or equipment. RDTs have become 
widely used in both point-of-care settings and population 
surveys due to their operational simplicity and cost-effec-
tiveness [29–33]. While the technique enhances access to 
diagnostics, especially in remote areas, RDTs have lower 
sensitivity for detecting low-level infections, such as 
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those with < 100 parasites/µL of blood, and cannot quan-
tify parasite density [34, 35]. Additionally, current RDTs 
may detect antigens for over three weeks post-treat-
ment especially those targeting histidine-rich proteins 2 
(HPR2), leading to poor specificity and potential overes-
timation of malaria cases in high transmission areas [30, 
33, 34, 36].

In contrast, polymerase chain reaction (PCR) assays 
are known for their high sensitivity and specificity [37]. 
While conventional PCR assays typically provide quali-
tative information on malaria infections, quantitative 
PCR (qPCR) can offer additional quantitative measures 
of malaria parasite density [38, 39]. Unfortunately, the 
widespread use of PCR assays for population surveys is 
hindered by cost constraints and the need for specialized 
expertise and infrastructure for implementation [37, 40, 
41].

The increased focus on evidence-based strategies in 
malaria control also includes a transition from broad 
subnational stratifications to more granular, fine-scale 
approaches [6, 10]. However, although current methods 
like RDTs and microscopy are favored for their opera-
tional simplicity, their effectiveness in detailed risk strati-
fication, which are critical for targeting both clinical and 
sub-clinical infections for malaria elimination, remains 
poorly understood. Some authors have also suggested 
that RDTs may have vastly reduced performance in set-
tings where the malaria burden has been significantly 
reduced [42]. This calls for a rigorous evaluation and 
comparison of these methods against highly sensitive 
techniques such as qPCR to refine malaria stratification 
approaches for malaria elimination. Indeed, available evi-
dence, including data from Kenya and Tanzania, suggest 
that PCR assays are generally better at pin-pointing main 
malaria hotspots in communities than RDTs and micros-
copy [43, 44]. The study from Tanzania further showed 
that in subsequent treatment campaigns relying on RDT-
based screening, ~ 45% of infections remain untreated, 
even if treatment is offered to all members of households 
with an infected individual [44]. In the Kenyan study, the 
authors went further to suggest that since detection of 
hotspots depends on the sensitivity of diagnostic tools, 
health authorities working in malaria elimination set-
tings should consider using PCR to guide detection of the 
residual hotspots, as this provides greatest opportunities 
to find asymptomatic individuals and sub-patent parasite 
reservoirs in the communities [43].

All these studies clearly show that while sub-national 
stratification may be the most effective approach to 
decide on how to allocate resources, the type of data used 
for such epidemiological profiling matters significantly; 
especially when the stratification is done at local-sub-dis-
trict levels. In places like southeastern Tanzania, which 

has experienced decades of sustained malaria interven-
tions and progress, and where robust entomological sur-
veillance already exists [45], addition of detailed parasite 
prevalence data from population-level surveys is required 
to enable more precise, fine-scale stratifications at both 
district and sub-district levels.

The aim of this study was, therefore, to generate a high-
resolution population-level survey map of P. falciparum 
prevalence in two districts in south-eastern Tanzania and 
to compare the fine-scale malaria strata obtained using 
data from different test methods, namely RDTs, micros-
copy, and qPCR. Additionally, the study evaluated the 
performance of RDTs and microscopy relative to qPCR 
in a range of transmission settings from high to very low. 
This study also sought to provide detailed population 
survey data on malaria burden to complement the ongo-
ing entomological surveys in the study area.

Methods
Study site
The study was conducted in Morogoro region, in south-
eastern Tanzania (Fig. 1), in the two districts of Kilomb-
ero (population: ~583,000; 8.2414°S, 36.3349°E; elevation: 
~270  m) and Ulanga (population: ~233,000; 8.9889°S, 
36.6133°E; elevation: ~800 m). The average malaria prev-
alence in the Morogoro region has previously been esti-
mated to exceed 10%, with P. falciparum as the dominant 
malaria species [19, 20, 46]. The main economic activities 
for residents include rice farming, sugarcane farming and 
maize farming, though the area also has other food crops 
and large commercial tree plantations (teak). The known 
annual rainfall range is 1200–1400 mm in the lower-lying 
plains of Kilombero district, and 1400–2100  mm in the 
higher areas in Ulanga district [47]. Approximately 90% 
of the rainfall occurs during the wet seasons between 
December to April, with dry seasons typically lasting 
from June through September [47]. The annual mean 
daily temperature is around 27  °C in the lowlands and 
approximately 23  °C in the highlands. Relative humid-
ity averages from 75% in the lowlands to 80% in the 
highlands.

Study design, procedures and survey tools
The cross-sectional surveys were conducted once per vil-
lage, and the entire surveillance spanned two consecutive 
years, from 2022 in Ulanga to 2023 in Kilombero, cover-
ing the months of April to September each year. Villages 
were randomly selected from each district, and sample 
sizes per village were proportionately determined based 
on the population of each village using Cochran’s for-
mula adjusted for finite populations [48–50]. The sample 
size aimed to achieve a 95% confidence interval with a 
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precision of 5% for each specific village prevalence esti-
mate see supplementary Table 3.

The expected prevalence varied depending on the 
village and was derived from previous surveys and 
health centers within each village. These earlier unpub-
lished surveys had covered a much smaller subset of the 
areas and yielded prevalence rates ranging from as low as 
1% to as high as 45%. For villages without these popula-
tion surveys, health facility data from the given village 
or from neighboring villages were utilized. Based on the 
estimated sample sizes per village, representative house-
holds were determined, assuming an average household 
size of three individuals. Households were selected by 
randomizing the names of all households obtained from 
the respective village administrations. This selection 
ensured equal representation of households from each 
sub-village, thereby covering all parts of the village. The 

selected households were visited and recruited if they 
consented.

The screening criteria included individuals aged 5–60 
years who had not taken malaria medications in the 
preceding two weeks. This precaution aimed to pre-
vent potential overestimation by RDTs, as they may 
detect residual traces post-treatment [51]. Individu-
als needing special medical attention, such as preg-
nant women, were excluded from the study. All eligible 
individuals in selected households were allowed to par-
ticipate. Each participant who underwent malaria screen-
ing was assigned a unique identification number that 
was also linked to their corresponding household ID. 
On-site finger-prick blood samples were collected for 
three diagnostic tests: (1) RDTs, (2) creating thick and 
thin blood smears, and (3) collecting 3–5 dried blood 
spots (samples) on Whatman 903™ protein saver cards. 

Fig. 1 Study villages in Kilombero and Ulanga districts, south-eastern Tanzania
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Subsequently, these samples were transported to the ref-
erence laboratory for microscopy and qPCR analysis.

Ethical considerations, survey team, and trainings
Permission to conduct this study was obtained from 
the Ifakara Health Institute Review Board (Ref: IHI/
IRB/No: 1/2021) and the National Institute for Medical 
Research-NIMR (NIMR/HQ/R.8a/Vol. 1X/3735). Addi-
tionally, approvals were obtained from regional, district, 
ward, and respective selected village authorities before 
commencing the surveys, given the screening was done 
at centralized location in each village. Written informed 
consent was obtained from individual adult participants 
(and parents or guardians of those aged below 18) on the 
day before the actual testing. The study team consisted 
of 11 members, including three molecular laboratory 
technologists, four licensed medical laboratory micros-
copists, two licensed clinical officers, and two social sci-
entists. Prior to the survey commencement, a five-day 
training session was conducted at the Ifakara Health 
Institute laboratory. This training covered explanations 
of the study protocols, pilot implementations, procedures 
for protecting human participants, quality assurance and 
training on data collection tools.

Tests using malaria rapid diagnostic tests (RDTs)
A small blood drop obtained through a finger prick was 
collected onto the RDTs (SD Bioline Ag Pf/Pan), follow-
ing the manufacturer’s instructions. The buffer solution 
was applied according to standard RDTs procedures 
and left on the bench surface for up to 20 min. The type 
of  RDT used were capable of detecting P. falciparum 
infections by targeting histidine-rich protein-2, which 
react on the Pf-line. Additionally, they could detect Plas-
modium malariae, Plasmodium vivax and Plasmodium 
ovale by targeting glycolytic lactate dehydrogenase, 
expressed by the Pan-line on RDTs [35, 52]. The RDT 
results were recorded on a paper form, and any individu-
als who tested positive for malaria were promptly treated 
with Artemether Lumefantrine (ALu), following Tanza-
nia’s national malaria treatment guidelines [53].

Tests using microscopy
Thick and thin blood smears were created in the field, 
stained with 10% Giemsa for 15 min then examined for 
the presence of malaria parasites under oil immersion 
at 100X magnification [49, 54, 55]. Two experienced 
microscopists independently read the slides, and dis-
crepancies between them were resolved by a third, more 
experienced microscopist. They read the thick smear 
first, and if an infection was detected, the thin smear was 
read to identify parasite species. The presence of both 
asexual and sexual malaria parasite stages discriminating 

P. falciparum, P. malariae, and P. ovale was recorded. 
Asexual stage parasites were counted per 200 white 
blood cells and assuming 8000 WBC/µL [56]. The mean 
count of malaria parasite by microscopy between the two 
readers was calculated and confirmed by the third reader.

Tests using real‑time qPCR assays
A representative sample of approximately two thirds of 
all samples was randomly selected from each village and 
screened further by quantitative polymerase chain reac-
tion (qPCR) i.e. 4905 samples out of the total 7628 sam-
ples. Out of the five spots on the Whatman protein saver 
card, three were punched using a handheld 6  mm slot 
hole puncher. These punched spots were then used for 
DNA extraction with the Quick-DNA™ Miniprep Plus 
Kit (Zymo Research, USA) [57], and eluted with 50 µL of 
elution buffer, stored at −20 °C for further detection and 
quantification of P. falciparum infections using probe-
level allele-specific quantification (PlasQ)-multiplex 
qPCR assays protocols [39, 58, 59]. The detection and 
quantification of P. falciparum parasites were performed 
using the Bio-Rad CFX96 real-time PCR system (Bio-Rad 
Laboratories, USA) [58] and analyzed with Bio-Rad CFX 
maestro software. The qPCR reaction, PlasQ primers and 
probes mix, are summarized in supplementary online 
Tables  1 & 2. DNA amplification processes included: 
activation at 95  °C for 1  min, denaturation at 95  °C for 
15 s, and annealing and elongation at 57 °C for 45 s for 45 
cycles, followed by melting [58].

The qPCR assays were run with positive controls (sam-
ples with confirmed P. falciparum) and a non-template 
control (samples with no P. falciparum as negative con-
trol). For absolute parasite quantification, the WHO 
international standard for P. falciparum nucleic acid 
amplification techniques were used (WHO reference 
from NIBSC#04/176) [39]. The standard was reconsti-
tuted following the manufacturer’s instructions and seri-
ally diluted in the range of 100,000 parasites/µL to 0.01 
and analysed in triplicates.

During the qPCR assay, the prepared standards were 
run together with unknown samples, and at the end of 
the assay, the standard curve and samples were normal-
ized and analyzed with Bio-Rad CFX maestro software. 
The obtained normalized Ct values of the samples and 
the linear regression equation derived from the standard 
curve were used to calculate the parasites density of the 
unknown samples, expressed as parasites per microlitre 
(parasites/µL) of blood.

Malaria stratifications (PfPR) categories
Malaria stratifications generally rely on predefined PfPR 
categories, with NMCPs adopting WHO definitions. 
In this study, which focuses on fine-scale stratifications 
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at the village level (the lowest administrative bounda-
ries), PfPR categories predefined in a study conducted 
in mainland Tanzania were adapted [2, 6]. These cat-
egories stratify malaria risk at the council level, which is 
also considered fine scale, as it is below the district level 
[6]. The arbitrary risk categories used are: very low risk 
(PfPR < 1%), low risk (1% ≤ PfPR < 5%), moderate risk (5% 
≤ PfPR < 30%), and high risk (PfPR ≥ 30%). In this study, 
the strata were defined as fine-scale because they were 
performed at the village level using data derived from vil-
lage prevalence estimates.

Data analysis
All results from RDTs, microscopy, and qPCR were 
entered into the Open Data Kit (ODK) system [60], 
and subsequently downloaded as an excel file for fur-
ther cleaning. The datasets for RDTs, microscopy, and 
qPCR results were merged based on the participant’s ID 
using the Pandas Python package [61]. Generalized lin-
ear mixed models (GLMMs) with a binomial distribu-
tion were utilized to evaluate the relationship between 
malaria infection risk and the predictors age and gender. 
These models were implemented using the R statisti-
cal software, where random effects for both Village and 
House ID were incorporated to address the hierarchi-
cal structure and intra-cluster correlations within the 
dataset.

Additionally, to evaluate the performance of RDTs and 
microscopy in fine-scale malaria stratifications com-
pared to qPCR, their agreement was tested using Kappa 
statistic [62], and the resulting Kappa values interpreted 
as follows: κ < 0.20 as poor agreement, 0.21–0.40 as fair, 
0.41–0.60 as moderate, 0.61–0.80 as substantially good 
and 0.81–1 as almost perfect agreement [63]. In addition, 
the positive predictive value (PPV) for RDTs and micros-
copy was computed, using qPCR results as the reference, 
per village, as (proportion of positive test results that are 
actually true positives, estimated as PPV = True Positives/
(True Positives + False Positives)). Fine-scale stratification 
by villages was performed using data from qPCR, RDT, 
and microscopy to generate prevalence maps with QGIS 
software version 3.26, enabling visualization of malaria 
prevalence across the study area. To further analyse this 
data, Inverse Distance Weighting (IDW) interpolation 
techniques were employed. IDW estimates values at 
unsampled locations by weighting observed data points 
inversely to their distance, creating a smooth, continu-
ous surface [64]. This method was applied to the malaria 
prevalence data from RDTs, microscopy, and qPCR for 
each village, producing continuous surfaces that visually 
depict spatial variations in malaria risk across the study 
area.

The geometric mean of parasite density, estimated by 
microscopy and qPCR, was calculated for each village. 
These densities were also statistically compared across 
different gender and age groups within each village. The 
non-parametric Mann-Whitney statistics were used to 
compare the parasite densities between two categorical 
groups, while Kruskal-Wallis statistical tests were used to 
compare more than two categorical groups [65, 66]. For 
example, differences in parasite densities between age 
groups were tested using Kruskal-Wallis statistics, and if 
statistically significant, the Mann-Whitney statistics were 
applied for pairwise statistical significance tests. All anal-
yses comparing parasite densities excluded the negative 
cases and focused solely on investigating parasite density 
distribution among malaria-positive patients within each 
respective village. Lastly, to test for statistical correlations 
between parasite prevalence and parasite densities esti-
mated by both qPCR and Microscopy, non-parametric 
Spearman’s rank correlation tests were employed [67]. 
Additionally, a logistic regression model was used to 
evaluate the probability of detecting malaria infections 
(positive or negative) with both RDTs and microscopy at 
varying parasite densities estimated by qPCR.

Results
Baseline study population
This survey covered 35 villages across Ulanga and Kil-
ombero districts. A total of 7628 participants (> 5 years) 
were recruited upon consent and tested for malaria using 
RDTs and microscopy. The number of participants tested 
per village ranged from over 132 to 449. Additionally, 
64.3% of these participants (4905) were also tested using 
qPCR (see Fig.  2). Males comprised 38% of the study 
population, while females made up 62%. Among the par-
ticipants, 35% were school-aged children (5–15 years), 
and 65% were aged 16 years and above (Table 1).

Malaria prevalence by RDTs, microscopy and qPCR
In the Ulanga district, malaria transmission was found to 
be high by both qPCR and RDTs, with P. falciparum prev-
alence rates of 53.89% [95% CI 52.06–55.72] and 38.35% 
[95% CI 36.92–39.79], respectively. However, micros-
copy categorized it as moderate, with a prevalence rate of 
26.07% [95% CI 24.77–27.36] (Table 2). Within this mod-
erate to high transmission strata in Ulanga, males had a 
significantly higher prevalence of malaria compared to 
females. The odds ratios of malaria infection in males 
compared to females were estimated as 1.6 [95% CI 1.4–
1.8] (P < 0.001) by RDTs, 1.4 [95% CI 1.2–1.6] (P < 0.001) 
by microscopy, and 1.5 [95% CI 1.2–1.7] (P < 0.001) by 
qPCR (Table 2). All tests - RDTs, microscopy, and qPCR 
- indicated that school-age children (5–15 years) had a 
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significantly higher prevalence of malaria infections than 
the other age groups, (P < 0.001), refer Table 2.

In Ifakara council, within the Kilombero district, both 
RDTs and microscopy categorized the area as a low risk 
stratum, with observed prevalence rates of 2.68 [95% 
CI 2.12–3.24] and 1.84 [95% CI 1.37–2.30], respectively 
(Table  3). However, qPCR classified Kilombero district 
as a moderate risk stratum with a prevalence rate of 8.77 
[95% CI 7.55–9.99] (Table 3). Notably, there were no sta-
tistically significant differences in malaria prevalence 
between males and females in this low to moderate trans-
mission setting, as indicated by both RDTs (Odds ratios 
1.2% [95% CI 0.8, 2.], P = 0.361) and microscopy (Odds 

ratio 1.33% [95% CI 0.7, 2.0], P = 0.521), as well as qPCR 
(Odds ratios 1.2% [95% CI [0.7–1.4], P = 0.941). Addi-
tionally, school-age children (5–15 years) exhibited a sig-
nificantly higher risk of malaria infections compared to 
those 16 years old and above, as demonstrated by both 
RDTs and microscopy (P < 0.001). However, qPCR dem-
onstrated no significant difference between the two 
groups (P < 0.124) (refer to Table 3).

Micro‑stratification of malaria risk using data collected 
by qPCR, RDTs, and microscopy
Significant variability in malaria infections was observed at 
the individual village level, with prevalence rates ranging 

Fig. 2 Schematic representation of the study sampling procedures
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from 0% to over 50% across the study area (Fig. 3; Table 4). 
Additionally, the method used to test for malaria signifi-
cantly impacted the risk categorization of villages. Among 
the 35 villages surveyed, qPCR data indicated that only 
one village (1.2% of all villages) had very low malaria prev-
alence (PfPR < 1%). In contrast, RDTs identified 12 villages 
(34.3% of all villages) and microscopy identified 11 villages 
(31.4% of all villages) as having very low prevalence. For 
moderate transmission, qPCR, RDTs, and microscopy cat-
egorized 15, 9, and 8 villages, respectively. For high trans-
mission, qPCR identified 14 villages, RDTs identified 8, 
and microscopy identified 6. Notably, qPCR detected more 
malaria infections than RDTs and microscopy, resulting in 
many villages being classified into higher transmission cat-
egories. For actual value of prevalence per village refer to 
supplementary Tables 3 & 4.

Overall, using qPCR data, over 80% of the villages were 
classified as moderate to high risk, significantly higher 
than the 48% classified by RDTs and 40% by microscopy. 
Conversely, while only 17% of the villages were clas-
sifiable as having low or very low malaria risk based on 
qPCR data, as high as 51% and 60% of the villages were 
classified into these same categories based on RDT and 
microscopy data (Table 4; Fig. 4).

Comparison of the performance of RDTs and microscopy 
relative to qPCR
In this comparative analysis, only samples tested by all 
three methods—PCR, RDTs, and microscopy—were 
included (n = 4905). Among these, qPCR identified 1712 
(34.9%) as positive, whereas RDTs and microscopy classi-
fied 1289 (26.3%) and 843 (17.2%) positives, respectively 
(Table 5; Fig. 5).

Both RDT and microscopy missed several infections 
otherwise identified by qPCR. This category of false 

negatives included cases where qPCR identified a sam-
ple as positive, but microscopy identified it as nega-
tive, cases classified as positive by qPCR but negative by 
RDTs, and cases where RDTs indicated positive results 
while microscopy indicated negative result. Out of the 
1712 positives detected by qPCR, RDTs missed 650 
(37.97%) and microscopy missed 1009 (58.9%) (Table 5). 
Additionally, when comparing microscopy to RDTs, 
microscopy failed to detect 45.46% (586/1289) of malaria 
infections detected by RDTs. RDTs correctly identified 
1062 (62.03%) samples as true positives, while micros-
copy identified 703 (41.06%) as true positives (Table  6). 
Furthermore, RDTs misclassified 227 (7.10%) samples 
as false positives, while microscopy misclassified 140 
(4.38%) (Table  6). More importantly, 56 samples were 
classified as positive by both RDTs and microscopy but 
were missed by qPCR (Fig. 5).

Positive predictive values (PPVs), sensitivity, specificity, 
and agreement of RDTs and microscopy when compared 
to qPCR
Considering qPCR as the benchmark, the sensitivity (the 
proportion of actual positives which were correctly iden-
tified as such) of RDTs was 62.0% [95% CI 60.0–64.2], 
while that of microscopy was 41.0% [95% CI 38.8–43.4]. 
The specificity (proportion of actual negatives which 
were correctly identified as such) was 92.9% [95% CI 
92.00–93.7] for RDTs and 95.6% [95% CI 94.9–96.3] for 
microscopy (Table  6). Overall, the positive predictive 
value (PPV), i.e. the probability that individuals with a 
positive test result actually have true infection, was 82.4% 
[95% CI 80.3–84.4] for RDTs and 83.4% [95% CI 80.8–
86.0] for microscopy (Table 6). Importantly however, the 
PPV for both RDTs and microscopy varied with malaria 
endemicity, generally increasing with prevalence, ranging 
from less than 20% in very low transmission areas to over 
80% in high transmission areas (Fig. 6).

When considering the micro-strata generated using 
qPCR data, the PPV of RDTs and microscopy started 
at 0% in very low risk strata and gradually increased to 
> 80% as villages shifted towards high risk strata (Fig. 6A). 
However, when referring to the strata generated using 
RDTs data (Fig. 6B), the PPV of both RDTs and micros-
copy started at 20% in very low risk strata and gradually 
increased to > 80% in high-risk strata. The agreement 
between RDTs and qPCR was good (Kappa value = 0.68 
[95% CI 0.6–0.8]), while the agreement between micros-
copy and qPCR showed fair agreement (Kappa value = 0.5 
[95% CI 0.4–0.6]), (Table 6).

The sensitivity of both RDTs and microscopy varied 
by age, where RDTs sensitivity was higher for school-
aged children (> 80%) and dropped to 75% and 60% for 
16–20 years and > 20 years, respectively (Fig.  6C). A 

Table 1 Baseline characteristics of the study populations

Kilombero district
n (%)

Ulanga district
n (%)

Total
N (%)

Villages 19 (54.3) 16 (45.7) 35

Sub Villages 48 (51.6) 45 (48.4) 93

Gender 

 Female 2164 (67.4) 2573 (58.3) 4737 (62.1)

 Male 1047 (32.6) 1844 (41.7) 2891 (37.9)

 Total  3211  4417  7628 

Age Group 

 5–10 years 519 (16.2) 935 (21.2) 1454 (19.1)

 11–15 years 400 (12.5) 802 (18.2) 1202 (15.8)

 16–20 years 198 (6.2) 333 (7.5) 531 (7.0)

 > 20 years 2094 (65.2) 2347 (53.1) 4441 (58.2)

 Total  3211  4417  7628 
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Fig. 3 Fine-scale malaria mapping of 35 surveyed villages in the Ulanga and Kilombero districts using qPCR, RDTs, and microscopy data is shown 
in the top panel. The bottom panel indicates malaria risk generated by interpolating prevalence data obtained for each surveyed village by qPCR, 
RDTs, and microscopy. Categories defined based on calculated prevalence rates as either very low risk (PfPR < 1%), low risk (1% ≤ PfPR < 5%), 
moderate risk (5% ≤ PfPR < 30%), or high risk (PfPR ≥ 30%) (total number of villages = 35)
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Table 4 Number of villages categorized into different risk strata based on the P. falciparum prevalence rate (PfPR) data from qPCR, 
RDTs and microscopy

Risk strata Prevalence Number of villages

qPCR RDTs Microscopy

Count % No. % No. %

Very low PfPR < 1% 1 2.9 12 34.3 11 31.4

Low 1% ≤ PfPR < 5% 5 14.3 6 17.1 10 28.6

Moderate 5% ≤ PfPR < 30% 15 42.9 9 25.7 8 22.9

High PfPR ≥ 30% 14 40.0 8 22.9 6 17.1

Total 35 100.0 35 100.0 35 100.0

Fig. 4 Percentage of villages categorized by different testing methods as either very low risk (PfPR < 1%), low risk (1% ≤ PfPR < 5%), moderate risk 
(5% ≤ PfPR < 30%), or high risk (PfPR ≥ 30%) (Total number of villages = 35)

Table 5  Proportion of malaria positive samples missed by RDTs and microscopy when qPCR is used as the reference

No. Tested  Pf. Positive Prevalence

qPCR 4905 1712 34.9%

RDTs 4905 1289 26.3%

Microscopy 4905 843 17.2%

 Proportion of missed positives when qPCR is the reference 

 Total Positive by qPCR  Sample missed  (%) of missed Positive 

RDTs 1712 650 37.9%

Microscopy 1712 1009 58.9%
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similar trend of sensitivity was observed for microscopy 
(Fig. 6C), indicating that RDTs and microscopy perform 
better in detecting malaria in school-aged children com-
pared to adults.

The relationship between parasite density and the 
malaria detection probability by RDTs and microscopy 
was also examined. In this analysis, the probability of 
RDTs detecting positive malaria infections was maxi-
mized reaching 1 at 100 parasites/µL, where the logis-
tic regression (logit (p)) model saturated (Fig.  6D). At 
this density in contrast, the probability of microscopy to 
detect malaria infections was only 0.85% (Fig. 6D), sug-
gesting higher sensitivity of RDTs vs. microscopy.

Parasites density estimates and their correlations 
with Plasmodium prevalence
Further, asexual parasite densities estimated by both 
microscopy and qPCR were investigated and compared 
across different sex and age groups using Mann-Whit-
ney statistics for two categories and the Kruskal-Wallis 
statistical test for more than two categories. Overall, 
PCR was capable of detecting approximately 100 fold 
lower parasite densities compared to microscopy. The 
geometric mean asexual parasite density estimated by 
microscopy was 2206.4 parasites/µL (95% CI 1976.7–
2462.8), while that estimated by PCR was 27.07 para-
sites/µL (95% CI 23.23–31.54) (Fig. 7A and B).

Fig. 5 The Venn diagram illustrates positive samples detected exclusively by a specific tool while the other two missed them (qPCR only: 594 
positive, RDT only: 171 positive, Microscopy only: 84 positive). Additionally, it shows intersections indicating positive detection by two tools 
when one detects negative (qPCR & RDT: 415 positive; qPCR & Microscopy: 56 positive; RDT & Microscopy: 56 positive). It also indicates intersections 
where all tools detect positive samples (qPCR, RDT, & Microscopy: 647 positive)
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The asexual parasite density of infected individu-
als significantly differed between males and females as 
estimated by qPCR (P < 0.001), with males harboring a 
higher parasite density compared to females, though 
similar trend was observed by microscopy, this sex dif-
ference was not statistically detectable by microscopy 
(P = 0.11). Importantly, the geometric mean parasite 
density estimated by both microscopy and qPCR per 
village demonstrated a significant positive correla-
tion with the parasite prevalence of the respective vil-
lage. Thus, villages with high malaria prevalence also 
had high malaria parasite densities compared to vil-
lages with lower prevalence (Fig.  7C-F). Considering 
qPCR-estimated geometric mean parasite densities, the 
Spearman rank correlation score was 0.77 (P < 0.001) 
and 0.76 (P < 0.001) when the malaria prevalence of 
the villages was estimated by qPCR and RDTs, respec-
tively (Fig. 7C and E). On the other hand, the Spearman 
rank correlation for the parasite density estimated by 
microscopy was 0.55 (P < 0.003) and 0.48 (P < 0.012) for 
qPCR and RDTs estimated prevalence of the villages, 
respectively (Fig. 7D and F).

When parasite density by age groups were analyzed, 
both microscopy and qPCR revealed a significant dif-
ference in estimated malaria parasite densities between 
age groups based on Kruskal-Wallis statistics (P < 0.001) 
(Fig. 7A and B). Pairwise tests by Mann-Whitney statis-
tics revealed that school-aged children (5–15 years old) 
harbored a higher parasite density than those 16 years 
old and above (P < 0.001) as indicated by both micros-
copy and qPCR (Fig. 7A and B).

Discussion
In malaria-endemic countries, data-driven risk stratifica-
tion is increasingly used at district or higher regional lev-
els to guide intervention strategies and optimize resource 
allocation. Additionally, the geographical variations in 
levels of endemicities and the shift towards elimination 
in some settings necessitates finer resolution for opti-
mal resource allocation [6, 10, 68]. In most settings in 
Africa, the data used for epidemiological stratification 
of malaria typically comes from rapid diagnostic tests 
(RDTs) or microscopy-based testing, which despite wide-
scale availability and low operational costs, often perform 
poorly in low transmission settings [43, 69, 70]. While 
direct comparisons of these diagnostic tools for fine-scale 
stratification are currently limited, selecting the most 
appropriate data sources and testing methods is cru-
cial, as different methods can yield significantly different 
results depending on endemicity, particularly in elimina-
tion settings. Even without alternative testing methods, 
data users and decision-makers need to understand the 
limitations of their selected approaches, especially the 
weaknesses of current dominant data sources like RDTs 
or microscopy. In this study, a high-resolution survey of 
P. falciparum malaria was conducted in two Tanzanian 
districts, comparing fine-scale strata obtained using 
RDTs, microscopy, and qPCR assays.

The study showed significant variability in malaria risk 
at a fine scale. Within less than 150  km, malaria preva-
lence estimates ranged from 0% to over 50% across con-
tiguous villages in an area broadly classified as moderate 
risk (~ 17% PfPR) by recent government stratification 
[46]. Such fine-scale variability is not uncommon and has 
been observed in several other settings [71]. In one study 

Table 6 Evaluation metrics for assessing the performance of RDTs and microscopy relative to qPCR during the fine-scale stratification 
of malaria risk in Ulanga and Kilombero districts, southeastern Tanzania

Test characteristics RDTs Microscopy (Thick smear)

True Positives (PCR positive = 1712) 1062 703

False Positives (PCR negative) 227 140

True Negatives (PCR negative = 3193) 2966 3057

False Negatives (PCR positive) 650 1009

Sensitivity [95% CI] 62.0%
[95 CI 60.0–64.2]

41.0%
[95 CI 38.8–43.4]

Specificity [95% CI] 92.9%
[95 CI 92.0–93.7]

95.6%
[95 CI 94.9–96.3]

Positive Predictive Value [95% CI] 82.4%
[95 CI 80.3–84.4]

83.4%
[95 CI 80.8–86.0)

Negative Predictive Value [95% CI] 82.0%
[95 CI 80.7–83.2]

75.2%
[95 CI 73.8–76.4)

Kappa value [95% CI] 0.68
[95 CI 0.6–0.8]

0.5
[95 CI 0.4–0.6)

Accuracy 82.1% 76.57%
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in Madagascar, there was a tenfold difference of malaria 
prevalence within a radius of less than 50  km [72]. For 
precise micro-stratifications, this study emphasizes the 
importance of carefully selecting diagnostic tools, espe-
cially for local malaria elimination efforts. The findings 
of this study indicate that RDTs and microscopy have 
poor positive predictive values, which can be even less 
than 20% in villages with very low and low transmission 
as the proportion of truly infected individuals is very 
small compared to non-infected persons. There were also 
significant discrepancies in the resulting micro-strata 
depending on the test method used. For instance, among 
the 35 surveyed villages, RDTs and microscopy classi-
fied 12 and 11 as very low and 6 and 10 as low risk strata, 
respectively, while qPCR identified only 1 village as very 

low and 5 as low transmission. This means RDTs and 
microscopy classified majority of the villages as very low 
to low risk while qPCR classified most villages as moder-
ate to high risk (Table 4).

Clear demarcation of areas with very low to low risk 
versus those with moderate to high risk is essential, 
particularly in the push towards elimination. As coun-
tries increasingly adopt data-driven decision-making 
for malaria control, there is a risk of improper resource 
allocation or premature withdrawal of effective inter-
ventions from localities erroneously deemed as nearing 
elimination. Local authorities need to decide which data 
to use for local-level micro-stratification and whether 
RDTs, commonly used for broader-scale sub-national 
stratification, suffice for fine-scale local decision-making. 

Fig. 6 Estimates of the positive predictive values (PPVs) of RDTs and microscopy at different malaria endemicities across the study villages, defined 
based on either qPCR-derived strata (A) or RDT-derived strata (B). Panel C illustrates the trend in sensitivity of both RDTs and microscopy across age 
groups. The shaded area represents the 95% confidence interval. Panel D displays the detection probability of both RDTs and microscopy relative 
to parasite density estimated by qPCR
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Fig. 7 Geometric mean parasite densities per age group estimated by A qPCR and B microscopy. C (density estimated by qPCR) and D (density 
estimated by microscopy) show the correlation between parasite density and prevalence estimates by qPCR. E (density estimated by qPCR) and F 
(density estimated by microscopy) show the correlation between parasite density and prevalence estimates by RDTs
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Previous evidence has shown that hotspots identified by 
RDTs are less stable than those identified by microscopy 
and PCR [43]. Hotspots of febrile malaria infections are 
also generally unstable and variable over geographical 
spaces, while hotspots of asymptomatic cases tend to be 
more permanent and can be more practically targeted for 
transmission control [73]. This current study also found 
significant positive correlations between malaria parasite 
densities and malaria prevalence in southeastern Tan-
zania, emphasizing the need to incorporate tests that 
depict sub-microscopic infections into malaria stratifica-
tion and decision making to better target the hotspots. 
As reported in other studies, villages classified as low-
transmission areas in this study also had lower geometric 
mean parasite densities compared to those with higher 
transmission rates.

The findings of this study, benchmarked against 
qPCR, reveal limited detection capabilities of RDTs and 
microscopy in overall fine-scale stratifications, espe-
cially in low transmission settings. Previous studies have 
emphasized the usefulness of routine hospital data for 
micro-stratifications [8, 10, 74, 75]. However, evidence 
indicates that both microscopy and RDTs are less effec-
tive in identifying stable febrile malaria hotspots, except 
for asymptomatic hotspots, which are reliably identi-
fied by microscopy [73], however still not stable when 
transmission is low [76]. This research underscores the 
importance of identifying subclinical infections using 
sensitive tools to advance malaria elimination, particu-
larly through fine-scale population surveys. Addition-
ally, there is evidence suggesting potential benefits from 
integrating hospital and school-age children survey 
data or even antenatal care centers [2, 9]. Nevertheless, 
these approaches heavily rely on rapid diagnostic tests 
(RDTs) as the primary tool for malaria detection. While 
the World Health Organization (WHO) recommends 
monitoring RDT performance alongside microscopy, this 
study is particularly relevant as have directly compared 
the fine-scale stratification capabilities of RDTs, micros-
copy, and qPCR at a fine scale.

This study demonstrated overall good agreement 
between RDTs and qPCR, while microscopy showed fair 
agreement. However, RDTs missed over 38% of malaria 
infections, particularly among adults over twenty years 
old, who were found to harbor lower parasite densities 
compared to those under twenty years old. However, 
RDTs remain useful in testing fever-positive malaria 
cases in hospitals and are widely employed in population 
surveys due to their cost-effectiveness and ease of imple-
mentation [32]. As evidenced in this study, carefully re-
consideration of using RDTs for finer-scale mapping and 
intervention planning at sub-district level should be a pri-
ority. Similarly, microscopy missed > 50% of the malaria 

infections detected by qPCR, which is consistent with 
previous studies, including a meta-analysis of 42 stud-
ies, which showed that microscopy misses over 50% of 
malaria infections [26, 77]. Operational challenges, such 
as the level of expertise required for accurate detection 
and the need for electricity and precise sample handling 
procedures, contribute to these limitations. Interestingly, 
microscopy underestimated malaria risk by classifying 
more villages as low strata compared to qPCR. None-
theless, microscopy still plays a crucial role when used 
in conjunction with tools like RDTs, providing valuable 
information about malaria parasite densities [78–80]. 
Here, parasite densities estimated by microscopy were 
100 times higher than those measured by qPCR, consist-
ent with similar trends observed in previous studies [58]. 
The findings of this study also indicate that the false-neg-
ative rate of microscopy decreases with increasing para-
site density, a pattern observed in other studies too [78].

The analysis also revealed variations in parasite den-
sities across different age groups, with school-age chil-
dren (5–15 years old) exhibiting higher parasite densities 
compared to individuals aged 16 and above. Notably, our 
study identified a reduced sensitivity of both RDTs and 
microscopy among adults aged over 16 years, consist-
ent with findings from prior studies conducted before 
2015 in various regions [81–88]. It is possible that this 
pattern is driven by age-related differences in malaria 
parasite prevalence, as observed in Table 3, and may be 
confounded by unequal sampling of the age distribu-
tion. Furthermore, the findings suggest that this trend 
may be attributed to the lower parasite density esti-
mates observed in adults within the study (Fig.  7A and 
B). Significantly, this research provides valuable insights, 
highlighting the potential implications of these trends, 
particularly in fine-scale mapping scenarios, where RDTs 
and microscopy may underestimate burden at very low 
and low transmission strata, with qPCR serving as the 
reference standard in this study.

When selecting a tool for a stratification exercise, it is 
crucial to consider several key operational factors. First, 
to assess whether transmission levels are sufficiently low 
to require a high-sensitivity tool capable of differentiating 
between locations with the lowest prevalence. This was 
exemplified in much of this study area, especially in the 
northern zones where qPCR was clearly more sensitive 
than RDTs and microscopy. Second, evaluate the logis-
tical and cost implications associated with using each 
tool for testing individuals. Finally, consider the ethical 
requirements and the ability to provide immediate results 
and treatment when necessary. Ultimately, when aiming 
to achieve more precise fine-scale mapping of malaria 
infections to facilitate more accurate resource allocation, 
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the choice of testing tools should be based on the balance 
between sensitivity and operational feasibility.

Sensitive molecular tools like qPCR are available, but 
qPCR has operational challenges, including the need for 
well-designed infrastructure, high costs, and expertise, 
and it is not portable for remote areas. Efforts are under-
way to develop portable qPCR technologies, but cost and 
expertise remain significant barriers. To address these 
gaps, NMCPs should develop innovative plans, which 
might include: (a) establishing centralized facilities for 
receiving and processing qPCR samples and conduct-
ing such surveys infrequently, such as every 3 years; (b) 
partnering with local research organizations to support 
high-accuracy evaluations using nucleic acid-based tests; 
(c) exploring alternative methods for micro-stratification, 
such as geo-spatial modeling that integrates information 
such as land use, elevations, and other environmental 
factors, and potentially combining facility and population 
survey data.

A related point to emphasize is the overall need for 
highly sensitive, cost-effective, and potentially rea-
gent-free tools that align with the economic context of 
malaria-endemic settings. Recent innovations such as 
high/ultra-sensitive RDTs, the saliva-based tests [89] 
or the use of Infrared spectroscopy (IR) and machine 
learning (ML) [79, 90] have shown promise in detecting 
malaria infections at sensitivities equivalent to PCR, but 
further research are needed before these technologies 
can be routinely deployed. Such reagent-free assays like 
the IR-AI based approaches would be particularly trans-
formative for scaling up effective micro-stratification of 
malaria risk in Africa.

It is important to recognize that prevalence rates 
obtained from different tests are not directly compara-
ble; for example, a 5% prevalence detected by RDTs does 
not equate to a 5% rate detected by PCR. In some cases, 
ranking prevalence may be more critical than the exact 
rates. Additionally, variations in sample sizes should be 
considered, especially in fine-scale stratifications, as con-
fidence intervals (CIs) may cause overlap across strata. 
Therefore, it is important to assess stratifications based 
on prevalence CIs rather than relying solely on point esti-
mates. In this study, despite some villages spanning two 
or three strata based on their CIs, RDTs and microscopy 
still classified more villages as very low to low risk, while 
qPCR frequently classified them as moderate to high (see 
Supplementary Table 4).

More importantly, the need for more detailed data 
becomes crucial when stratification occurs at local scales, 
such as comparing wards or villages within districts, as 
done in this paper, rather than at the national level, where 
regions or districts are compared. While most malaria 
stratifications are currently conducted at national and 

sub-national levels using RDTs and sometimes micros-
copy, this study highlights that the choice of test methods 
can influence decision-making and overall control strate-
gies, especially in finer-scale stratifications. Determining 
appropriate public health decisions was beyond the scope 
of this study and may vary based on the scale of strati-
fication. However, this study emphasizes that decision-
making should account for the strengths and limitations 
of the available data when planning stratifications. Addi-
tionally, countries may establish locally relevant thresh-
olds for deciding which interventions to implement or 
withdraw.

This study also raised some important new questions. 
For example, it is interesting to observe that areas with 
low transmission also have persistently low parasite 
densities compared to those in higher transmission set-
tings, which are usually reported to acquire immunity 
and become protective. Although this phenomenon of 
low parasite density in low transmission areas was not 
explored in detail in this study, it could suggest residual 
immunity among individuals due to recent declines 
in transmission or potential migration of participant 
[91]. Studies have demonstrated that in low transmis-
sion areas, highly virulent parasites are more exposed 
to facilitate malaria transmission by mosquitoes com-
pared to low virulent ones [92]. Consequently, high viru-
lent parasites are detected and treated, leading to their 
removal from the population [92]. This leaves behind 
low virulent parasites that are less exposed and maintain 
low densities, becoming asymptomatic, undetectable, 
and untreated [93]. This phenomenon may contribute to 
long-term parasite transmission strategies, highlighting 
the importance of using highly sensitive tools for screen-
ing [58, 92, 94].

In interpreting the findings of this study, several limi-
tations should be considered. The IDW technique used 
here is primarily intended for visualizing general trends 
in malaria risk rather than providing precise prevalence 
estimates or specific risk levels for each village (both 
sampled and unsampled). Unlike the exact data shown 
in the top panel of Fig. 3, IDW interpolation is subject to 
smoothing effects, particularly in areas with fewer data 
points, which may reduce the accuracy of the maps. Vil-
lages without data may contribute to differences, such as 
the appearance of low-risk areas in the southern regions, 
where actual values could range from moderate to high. 
Nonetheless, this approach effectively visualizes likely 
malaria risk patterns in unsampled areas by using known 
data from sampled villages, based on the results of dif-
ferent screening methods. Furthermore, seasonal vari-
ations are expected to influence village-level prevalence 
estimates and, consequently, the distribution of malaria 
risk. However, seasonality does not affect the primary 
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objective of this study, which is to evaluate the perfor-
mance of qPCR, RDTs, and microscopy for fine-scale 
stratification.

This study also did not account for all factors that may 
contribute to the broader heterogeneity of malaria infec-
tions in southeastern Tanzania. It is crucial for future 
studies to also investigate how different categorizations 
of malaria prevalence-based strata impact the agree-
ment between diagnostic tools. This will help determine 
the most appropriate categories for decision-making 
and resource allocation. Future investigations should 
also delve into potential environmental, geographical, 
immunological or genetic diversity of the parasite influ-
ences underlying this variability. Additionally, the bio-
logical significance of missed infections by both RDTs 
and microscopy was not explored. Consequently, the 
study did not estimate the transmission burden associ-
ated with these undetected positive samples, nor assess 
the parasite densities necessary to sustain transmission in 
the population.

Conclusion
As countries progress towards malaria elimination, 
fine-scale mapping of malaria risk becomes increas-
ingly important. This study highlights significant vari-
ability in village-level malaria risk within and between 
districts in southeastern Tanzania, an area where the 
scale-up of effective interventions has led to substan-
tial progress, yet cases persist despite high intervention 
coverage. Secondly, the study underscores the variable 
performance of different testing methods in stratify-
ing risk. While RDTs and microscopy, the primary test 
methods used in low-income endemic settings and 
the main sources of data for ongoing epidemiological 
stratification efforts, were effective in high-transmis-
sion areas, they performed poorly in low-transmission 
settings, often classifying most villages as very low or 
low risk. In contrast, qPCR classified most villages as 
moderate or high risk. These findings demonstrate the 
importance of using appropriate testing methods for 
data-driven, fine-scale risk stratification to enhance 
targeted interventions aimed at reducing and elimi-
nating malaria. The study underscores the need for 
proper choices of malaria testing approaches that 
are both operationally feasible and sufficiently sensi-
tive to enable precise mapping and effective targeting 
of malaria in local contexts. More importantly, public 
health authorities must recognize the strengths and 
limitations of their available data when planning local 
stratification or making decisions. While innovation for 
more effective strategies is ongoing, sensitive molecular 
tools like qPCR, despite their operational challenges, 
will be crucial for accurate malaria risk mapping and 

intervention planning, especially in settings with sig-
nificantly reduced risk. Going forward, developing new 
tools that balance operational costs and sensitivity, par-
ticularly in low transmission settings, will be essential 
for effective malaria control and eventual elimination.
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