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Abstract 

Background Vector-borne diseases, such as malaria, pose a significant global threat, and climatological factors 
greatly influence their intensity. Tropical countries, like India, are particularly vulnerable to such diseases, making accu-
rate estimation of malaria risk crucial.

Methods This study utilized the well-known Vector-borne Disease Community Model, VECTRI, developed 
by the International Centre for Theoretical Physics in Trieste. The model was implemented to estimate malaria’s 
Entomological Inoculation Rate (EIR). Future climatic prediction datasets, including CMIP 5 and population data sets, 
were used as inputs for the analysis. Three RCP scenarios are considered (Representative Concentration Pathways 
are climate change scenarios that project radiative forcing to 2100 due to future greenhouse gas concentrations). The 
projections covered the period from 1 Jan, 2020, to 31 Dec, 2029.

Results The estimated mean EIR for the years 2020–2029 ranged, and a significant decline in malaria risk 
was observed with all RCP 2.6, 4.5, and 8.5 scenarios. Each year 0.3 to 2.6 [min–max] EIR/person/day decline 
is observed with a strong decline in man rainfall ranging from 5 to 17 [min–max] mm/year and associated high tem-
peratures ranging from 0.03 to 0.06 [min–max] °C/year. During the post-monsoon period, August to November were 
identified as highly prone to malaria transmission. Spatial analysis revealed that the east coast of India faced a higher 
vulnerability to malaria risk, which kept increasing through RCP scenarios. Thus, it is essential to exercise caution, 
especially in areas with heavy rainfall.

Conclusion This research provides valuable insights for policy-makers, highlighting the need to implement future 
strategies to mitigate malaria risk effectively. By utilizing these findings, appropriate measures can be taken to combat 
the threat posed by malaria and protect public health.

Keywords Malaria risk, Climate change, VECTRI model, CMIP5 data, EIR

Background
The vector-borne diseases such as malaria are signifi-
cantly associated with the local meteorological condi-
tions. The basic life cycle of a mosquito depends on both 
humans and climate. Anopheles mosquitoes lay their 
eggs in various types of freshwater or brackish water, 

exhibiting species-specific preferences. The eggs typically 
hatch within a few days, and the resulting larvae undergo 
a developmental period of 9–12 days to reach adulthood 
in tropical regions [1]. However, if the larval habitats dry 
up prematurely, the larvae perish. Conversely, excessive 
rainfall can flush them away, leading to their destruc-
tion. The survival of mosquito larvae is uncertain, and the 
majority do not make it to adulthood [2].

The lifespan of adult mosquitoes is also relatively brief, 
influenced by temperature and humidity levels. Only 
older female mosquitoes are capable of transmitting 
malaria, as they must live long enough for sporozoites to 
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develop and migrate to their salivary glands. According 
to the Center for Disease Control and Prevention, this 
development process requires a minimum of nine days 
under warm temperatures (around 30 °C), while it takes 
even longer in cooler climates. When temperatures drop 
below a certain threshold (15  °C for Plasmodium vivax 
and 20 °C for Plasmodium falciparum) [3, 4], the develop-
ment cannot reach completion, and malaria transmission 
becomes impossible. Consequently, malaria transmission 
is more prevalent in warm and humid regions, whereas in 
temperate areas, transmission is limited to the hot days.

The proper temperatures (i.e. temperature ranging 
from 20–30 °C) and land cover with enough clear water 
availability is needed to achieve the aforementioned 
process. At present, there is a rapid climate change and 
associated elevated temperatures and extreme precipita-
tions over the sub-continent of India [5]. This may be the 
best habitable environment for parasites, resulting in a 
surge in malarial outbreaks in future scenarios. Though 
parasite transmission depends on meteorological param-
eters, the relationships between weather, climate, and 
Anopheles habitat suitability are complex and not neces-
sarily linear. The rainfall may create a temporary water 
body (site for reproduction) where the malaria vector 
grows and develops. However, the flushing of eggs due 
to extreme rainfall increases the mortality [6] of early-
stage larvae, thus resulting in the destruction of malaria 
vectors. Thus, future projections of climate and parasite 
transmission are highly needed. This can be achieved by 
dynamic models, such as the Liverpool Malaria Model 
(LMM) [7], Mapping Malaria Risk in Africa (MARA) [8], 
Modelling Framework for the Health Impact Assessment 
of Man-Induced Atmospheric Changes (MIASMA) [9], 
and Vector-borne Disease Community Model of Centre 
for Theoretical Physics Trieste (VECTRI), but to, achieve 
this goal, in present study most resent and highly adap-
tive Vector-borne Disease Community Model of Interna-
tional Centre for Theoretical Physics Trieste (VECTRI) 
[10] and estimated the entomological inoculation rate of 
malaria (EIR) is chosen.

In this paper, the possible impact of future climate sce-
narios on EIR in India is assessed using a combination 
of epidemiological data and CMIP5 climate predictions 
in the VECTRI modelling framework. Scenarios from 
lowest to highest possible emissions (Representative 
Concentration Pathways 2.6, 4.5, 8.5) are assessed in the 
model.

Methods
Study area data
Indian mainland is almost extended to 8° 4ʹ north to 37° 
6ʹ north latitude and 68° 7ʹ east to 97° 25ʹ east longitude 
(Fig.  1). India’s climate is indeed remarkably diverse. 

According to the Köppen system, it encompasses six 
major climatic subtypes:

Desert climate (BWh and BWk): In the western 
regions, India experiences arid and semi-arid conditions. 
The Thar Desert in the northwest falls into this category.

Highland climate: The northern Himalayan regions 
exhibit highland climates, including sub-arctic, tundra, 
and ice cap conditions. These vary with elevation and are 
characterized by cold temperatures.

Subtropical climate: The northern lowlands, such as 
Srinagar, have subtropical conditions. Some areas at 
higher altitudes touch continental climates.

Tropical climate: Much of the south and east of India 
exhibit tropical climate conditions. These regions sup-
port lush rainforests due to their warm and humid 
environment.

Monsoonal regime: India’s geography, including the 
Thar Desert and the Himalayas, plays a crucial role in 
its monsoonal regime. The Himalayas block frigid winds 
from the Tibetan Plateau, keeping North India warm 
during winter and hot during summer. South India tends 
to be warmer and more humid due to its coastlines.

Microclimates: India’s diverse topography results in 
starkly different microclimates, contributing to its status 
as one of the most climatically varied countries globally, 
in which Tropical, subtropical, semi-arid, and temperate 
zones are vulnerable to malaria risk. In India there, Most 
Indian regions, such as eastern states such as Chhattis-
garh, Odisha, and Jharkhand, as well as the northeast-
ern states including Tripura, Assam, Meghalaya, and 
Manipur, are the best habitable environment for malaria 
vectors” or “best environment for malaria transmission” 
[11]. However, due to climate change, these regions are 
shifting throughout India [12]. Thus, the VECTRI model, 
which includes both climate and population density, is 
useful in predicting malaria transmission.

Since the model relies on epidemiological and climatic 
data, the weather data was collected from the Coperni-
cus ECMWF data portal [13]. The data is CMIP5 model-
derived data with the lowest possible to highest emission 
scenario of Representative Concentration Pathways RCP 
2.5, 4.5 and 8.5. The data comprises the daily mean of 
temperature and rainfall over India with 1.875° × 1.85° 
and rescaled to 0.35° × 0.35° for a better understanding of 
spatial patterns. This smoothing process was done using 
a linear interpolation technique from Python libraries 
called Scipy, and an interp function was used.

Here, RCP future climatic data is a prediction from 
weather prediction models. The details of the data are 
presented in Table 1. The VECTRI model also uses popu-
lation density, which is taken from [14]; this data is real-
time observations given by the Government of India. 
Some empirical data that are useful for running the 
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model for Anopheles development are taken from previ-
ous studies, as stated in the Table 2.

Methods
In the present study, the VECTRI dynamical malaria 
model, developed by the International Centre for The-
oretical Physics (ICTP), is utilized. This mathemat-
ical-biological model takes into account two crucial 
meteorological parameters—temperature and rainfall—
as well as population density to assess malaria trans-
mission. The VECTRI model involves solving a set of 
equations that capture the life cycles of key malaria vec-
tors. In India, malaria is predominantly caused by two 
parasites, Plasmodium falciparum and Plasmodium 

vivax. Approximately 75% of all malaria cases in India are 
attributed to P. falciparum, while P. vivax accounts for a 
smaller portion of prevalence in some Indian states. The 
VECTRI setup considers the climatic sensitivity of the 
life cycle processes of the Anopheles Cruciferae vector 
and the P. falciparum parasite.

Anopheles mosquitoes undergo a progression from the 
egg stage to the larval and pupae stages, ultimately lead-
ing to the emergence of adult mosquitoes, contingent 
upon favourable environmental conditions. The VECTRI 
model incorporates the concept of degree days to repre-
sent the completion of both the sporogonic cycle and the 
gonotrophic cycle of the mosquito. Notably, the VECTRI 
treats the host and host-vector interaction as a single sys-
tem, rather than as separate entities.

Regarding rainfall, the VECTRI model parameter-
izes its effect based on surface hydrology. At lower 
rainfall values (measured in mm/day), larval develop-
ment takes place up to a certain threshold (7–8  mm/
day). Beyond this threshold, a flushing phenomenon 
occurs, which provides the necessary aquatic envi-
ronment for oviposition and the development of the 
aquatic stages of the mosquito. The volume of water 
in temporary water bodies, such as ponds serving as 

Fig. 1 Discrete population density used in study

Table 1 Climatic future projection of CMIP 5 data summary

Experiment: Representative Concentration Pathway 
(RCP) 2.6, 4.5, 8.5 [34]

Variable: 2m temperature, Mean precipitation flux

Model: Max Planck Institute Earth System Model
MPI-ESM-LR (MPI, Germany)

Ensemble member: r1i1p1
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breeding sites, critically depends on factors like infil-
tration, evaporation, and overflow. The model consid-
ers an evaporation loss of water at 5 mm/day, which is 
relatively minimal compared to infiltration and over-
flow rates. Additionally, the VECTRI model includes a 
latent heat flux of 145   Wm−2 and sets the infiltration 
rate at 245 mm/day.

Population density influences the biting rate and 
transmission probabilities of mosquitoes. In the VEC-
TRI model, the parameters are customized to suit the 
specific context of India and are outlined in Table 2.

In summary, the VECTRI model used in the study 
considers the impact of temperature, rainfall, and pop-
ulation density on malaria transmission. It stimulates 
the life cycles of malaria vectors and parasites while 
taking into account various climatic factors and their 
influence on the prevalence of malaria in India.

This malaria transmission model considers how local 
climate and precipitation affect the larval and adult 
life cycles of the malaria vector as well as the pathogen 
itself. This model also accounts for human population 
and land cover dynamics. The hot monsoon days of the 
Indian climate has a huge socio-economic impact [15, 
16] in case of a surge in malaria transmission. Thus, 
the study aimed to analyse and predict future malaria 
transmission through the estimation of EIR with dif-
ferent climatic scenarios. This estimation of EIR was 
modelled for Anopheles culicifacies, even though some 
regions have Anopheles fluviatilis, but major contribu-
tion is due to (> 70%) An. culicifacies [17]

Description of the new VECTRI model
The VECTRI model is a dynamical model for malaria 
transmission with grid cell distribution. Developed by 
the International Centre for Theoretical Physics (ICTP), 
it focuses on vector-borne diseases. Here are some key 
points about VECTRI:

1. Physically Based Treatment of Surface Hydrology: 
VECTRI incorporates surface hydrology with simple 
physical model. This allows it to account for factors 
like rainfall and water availability, which influence 
mosquito breeding sites.

2. Population Density Consideration: When calculating 
biting rates and transmission probabilities, VECTRI 
takes into account population density. This feature is 
crucial because it has ability to distinguish between 
rural and peri-urban areas of transmission rates.

3. Dynamic Framework for Development: VECTRI’s 
link to population density allows for active develop-
ment. It can incorporate factors such as immunity, 
migration, socio-economic status, urbanization, and 
interventions. This flexibility makes it suitable for 
regional or even continental-wide simulations.

4. Resolution and Novel Aspects: VECTRI can be 
resolved with a fine spatial resolution up to 10 km 
or less.  It explicitly models the growth stages of the 
egg-larvae-pupa cycle, as well as the gonotrophic and 
sporogonic cycles in mosquitoes.

Table 2 VECTRI model parameters

Description Value Unit

Eggs laid per female vector 80 [35] –

Maximum temperature for larvae survival 34 [36] °C

Minimum temperature for larvae survival 18 [36] °C

Time for egg hatching 1 [37] Days

Time for pupae stages 4 [38] Days

Minimal daily survival L1 larvae after intense rainfall 0.4 –

Exponential decay of flushing with rain rate 20 model parameter, default value is considered mm  day−1

Threshold temperature for egg development in vector 7.7
There’s no singular figure universally applicable to all vector species. However, 
studies often discuss temperature-dependent development rates in mosqui-
toes, thus default model value is considered

°C

Degree days for egg development in vector 37.1 Days

Threshold temperature for parasite development 16 [20] °C

Degree days for parasite development 111 [38] Days

Fraction of population renewed each year 0.02 –

Minimum anthropophilic biting rate 0.1 –
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RCP scenarios description
Representative Concentration Pathways (RCPs) are 
climate change scenarios that project radiative forcing 
to 2100 due to future greenhouse gas concentrations. 
RCPs are named based on their total radiative forcing 
by or after 2100. Radiative forcing is a measure of the 
additional energy taken up by the Earth system due to 
increases in climate change pollution. Positive radiative 
forcing means the planet warms, and negative radiative 
forcing means the planet cools.

RCP 4.5
The Intergovernmental Panel on Climate Change 
(IPCC) describes this as a moderate scenario where 
emissions peak around 2040 and then decline. For the 
same time period as RCP 8.5, RCP 4.5 would mean an 
increase of 4.5 watts per square metre (W/m2).

RCP 8.5
This is a high-emission scenario with a rise in radiative 
forcing to 8.5 W/m in 2100.

RCP2.6
This represents a pathway where greenhouse gas emis-
sions are strongly reduced, resulting in a best-estimated 
global average temperature rise of 1.6 °C by 2100 com-
pared to the pre-industrial period.

• These RCP data were collected from CMIP5 mod-
els. Thus, bias might exist; for more details, please 
refer [18]. Since the CMIP5 data was generated 
from GCM (General circulation models) which 
may have different biases.

• Cascading mean-state biases: These can lead to 
overly wet solutions. They can be caused by unsta-
ble lower troposphere, cold troposphere, and zonal 
wind speed biases. Radiation biases: These can 
be caused by clouds and other geophysical vari-
ables. Many GCMs have a cold air temperature bias 
and a moist tropospheric humidity bias. Errors due 
to limited spatial resolution:  These can be caused 
by large grid sizes.  Errors due to simplified phys-
ics:  These can be caused by simplified thermody-
namic processes and physics.

• However, these biases will have only marginal dif-
ference in VECTRI model because it has been stud-
ied earlier in research like [19, 20].

Step‑wise implementation of VECTRI model

1. Installing the VECTRI model
2. Download RCP daily temperature and daily precipi-

tation data
3. Converting precipitation data to mm/grid/day and 

temperature from Kelvin to degree centigrade.
4. Renaming the precipitation data to rain and con-

cat precipitation and temperature data to a single 
NetCDF file.

5. Downloading population data and making a popula-
tion flux to single NetCDF data with corresponding 
lat long data.

6. Running a series of simulations and obtaining daily 
EIR data per grid cell.

Regression analysis
To analyse the malaria risk, true incidence data sets were 
chosen from the National Center for Vector Borne Dis-
eases Control (NCVBDC) [21] and fitted the regression 
models of three different scenarios (RCP 2.6, RCP 4.5, 
and RCP 8.5) of historical simulations (2010–2019).

Here, the dependent variable is the number of P. falci-
parum cases in the whole country, which are retrieved 
from the Center for Vector Borne Diseases Control 
(NCVBDC) [21] and the independent variables are 
annual mean EIR, which is estimated from the VECTRI 
model with RCP 2.6, RCP 4.5, and RCP 8.5, and year cor-
responding to cases observed also taken to analyse the 
trend. A simple OLS (ordinary least square regression) 
model is considered.

Here, a is the slope of EIR, and b is the annual increas-
ing/decreasing cases trend per year, and C is the 
intercept.

Results
The VECTRI model was run with climatic data from 
01-01-2020 to 31-12-2029 and population density from 
Indian census data (2011). The results are presented with 
annual, monthly, and spatial trends to understand the 
dynamics of malaria.

Annual trends of EIR and climatological variables 
with different RCP scenarios
The study’s key findings indicate an annual decreas-
ing trend in the Entomological Inoculation Rate (EIR) 
across India. As shown in Fig.  2a, the average infec-
tious biting has decreased over the analysed period in all 
three emission cases RCP 2.6, 4.5, and 8.5. Though they 
have a decreasing trend, the highest decreasing slope is 

Pf(annualc ases) = a× EIR+ b× Year + C
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Fig. 2 Annual trends of EIR, temperature and precipitation
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with RCP 8.5 (− 2.6036), and the lowest is with RCP 4.5 
(− 0.3669).

At the same time, there is an observed increasing trend 
in temperature (Fig.  2b) and a slight decreasing trend 
in rainfall (Fig.  2c). Though the rainfall has a decreas-
ing trend, the highest decreasing slope is with RCP 8.5 
(− 5.4681), and the lowest is with RCP 4.5 (− 17.211).

The temperature shows a positive trend of approxi-
mately 0.03–0.06 °C per year, while there is a downward 
trend in rainfall at a rate of about − 5.4 to − 17.21 mm per 
year. Temperatures have an increasing trend; the highest 
decreasing slope is with RCP 4.5 (0.0667), and the lowest 
is with RCP 8.5 (0.0398).

These results strongly suggest there is a decrement in 
EIR and this is a positive sign from an epidemiological 
perspective. It’s worth noting that there is also a notice-
able surge in EIR, as seen in Fig. 2a and c, which is pre-
dicted to occur in 2027 (as per RCP 8.5) and 2024 (as 
per RCP 2.6). This surge is attributed to the high rainfall 
prediction for that particular year. Such variations in EIR 
highlight the sensitivity of malaria transmission to cli-
mate conditions, especially rainfall patterns.

In conclusion, the study’s key results demonstrate 
a decline in malaria transmission, as indicated by the 
decreasing EIR, which can be associated with global 
warming and changes in temperature and rainfall. How-
ever, it is crucial to recognize that while this decrease in 
malaria risk is positive, the alterations in climate have 
broader implications for various aspects of life and eco-
systems. Additionally, the prediction of a surge in EIR in 
2027 and 2024 emphasizes the importance of monitoring 
and understanding the complex relationship between cli-
mate and malaria transmission for effective public health 
planning and interventions.

Monthly trends
The monthly trends reveal that the middle of the mon-
soon season to the post-monsoon season (September 
to November) are the months with the highest malaria 
transmissions. During this period, the infectious mos-
quito bites per person per month (as shown in Fig.  3a) 
can reach up to 30–35. These months are character-
ized by average temperatures of approximately 25–28 °C 
(Fig.  3b) and sufficient rainfall (Fig.  3c), creating condi-
tions conducive to malaria prevalence. While rainfall 
plays a significant role in malaria transmission, it is not 
the sole determining factor. The model considers thresh-
olds for both rainfall (7–8 mm/day) and temperatures 
(15–30  °C), indicating that malaria development exhib-
its a non-linear relationship with climatic conditions. In 
Fig. 3, the blue colour represents the base RCP 2.6 emis-
sion mean, orange belongs to RCP 4.5, and green repre-
sents RCP 8.5.

As depicted in Fig. 3b and c, the most favourable condi-
tions for malaria transmission occur in September, with 
the best combination of rainfall and temperatures being 
around 130  mm/month and 26  °C, respectively. On the 
other hand, the EIR is nearly zero during the months of 
January to March. During the hot monsoon days and 
cold seasons in India, the malarial risk is very low due to 
extreme cold and hot temperatures.

In summary, the study highlights that the months from 
the middle of the monsoon season to the post-monsoon 
season are the peak malaria transmission months, char-
acterized by suitable temperatures and rainfall and this is 
well established fact from historical observations. How-
ever, these trends will increase with RCP in future sce-
narios. These conditions promote mosquito breeding and 
transmission. Conversely, the risk of malaria is signifi-
cantly reduced during the hot monsoon and winter sea-
sons due to extreme temperatures. The model used in the 
study considers both rainfall and temperature thresholds, 
illustrating the non-linear nature of malaria development 
in response to climatic factors.

From Fig. 3a, the highest increment in EIR is observed 
in August month in the RCP 4.5 case and a slight incre-
ment in July with RCP 4.5 and October with RCP 8.5.

Spatial trends with least emission case RCP 2.6
From 2020 to 2029, the spatial patterns of malaria trans-
mission will fallow consistent follow trends. The regions 
with the highest values of Entomological Inoculation 
Rate (EIR) are the east coast of India and the Indo-
Gangetic Plains (IGP). As shown in Fig.  4, these areas 
exhibit a habitable environment characterized by high 
rainfall and optimum temperatures. The air temperatures 
in these regions range between 25 and 30  °C, while the 
average rainfall is around 2.5 mm per day.

Conversely, Jammu and Kashmir has the lowest EIR 
due to extremely cold temperatures below 25 °C, despite 
receiving sufficient rainfall of more than 2  mm per 
day. Similarly, the northwestern regions, particularly 
Rajasthan, also have a low EIR due to extremely hot tem-
peratures exceeding 25 °C and very minimal rainfall, less 
than 1.8 mm per day.

As observed in Fig. 4, the overall magnitude of EIR has 
been decreasing from 2020 to 2029. However, there has 
been a spatial shift of EIR from the central part of India 
towards the east coast. This shift can be attributed to the 
higher precipitation rates in the east-coast region, where 
an increment of approximately 0.5 mm/day in rainfall has 
been observed.

Meanwhile, areas with extremely cold temperatures, 
like Jammu and Kashmir, and regions experiencing 
extremely hot temperatures and minimal rainfall, such as 
Rajasthan, exhibit lower malaria risk. The overall trend 
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Fig. 3 Monthly variation EIR, temperature and precipitation
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indicates a decline in EIR, but the shift of transmission 
towards the east coast of India is likely influenced by the 
increasing rainfall in that region.

Spatial trends comparison between RCP 2.6, 4.5 and 8.5
Figure  5a–c represent annual spatial EIR over India. As 
discussed earlier, the annual mean of EIR is decreasing, 
but from Fig. 5a–c, spatial EIR has changed significantly 
over India. In all three potential scenarios, the eastern 
coast of India is more vulnerable to malaria risk. Specif-
ically, in Fig.  5b, the year 2025 of the RCP 4.5 scenario 
shows a slight increase in risk throughout southern India. 
A high risk is observed over northeast India, which is 

witnessed with all RCP cases. In the RCP 2.6 case, the 
magnitude of EIR is more than 0.5 (per person per day), 
and it is about 0.4 (per person per day), with RCP 4.5 and 
again more than 0.5 with RCP 8.5. However, the mean 
of EIR/year is higher RCP 8.5 and followed by RCP 4.5 
and least with RCP 2.6. The states with high vegetation 
rates, such as Andaman and Nicobar, Meghalaya, and 
Tripura, showed a high EIR. The east-cost states such as 
West Bengal, Andhra Pradesh, and Tamilnadu showed a 
moderate risk. The west coast and northwestern regions 
showed very low risk. In Fig. 6, the colour pattern is the 
same as in Fig. 3; thus, blue represents RCP 2.6, orange 
represents RCP 4.5, and green represents 8.5. Thus, from 

Fig. 4 Spatial trends of EIR (83 × 81 pixels and each pixel is 36 km.2), temperature and precipitation of 2020, 2025 and 2029
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Fig.  6, most variations are observed with RCP 4.5, such 
as Andaman and Nicobar, Tripura, and West Bengal. The 
RCP 8.5 scenario affected some states, such as Jharkhand, 
Madya Pradesh, Meghalaya, and Telangana.

Regression model to find risk in coming years
From Fig.  7, the number of cases has decreased almost 
10 times in the last decade (i.e. 1.4 million to 0.4 mil-
lion). This drastic decrease is due to the Indian govern-
ment’s initiative to control malaria. The Government of 
India has set a national target of eliminating malaria by 
2030. The goal is to have zero indigenous cases of malaria 

throughout the country by then and to maintain malaria-
free status in areas where transmission has been inter-
rupted. The National Framework for Malaria Elimination 
(NFME) 2016–2030 was launched in February 2016 and 
aligns with the World Health Organization’s (WHO) 
Global Technical Strategy (GTS) for Malaria 2016–2030. 
The interesting fact is that even though the regression 
model showed (Fig.  7b) that malaria will be eliminated 
by 2030 still, the point to be noted is that the year 2027 
is risky even with this elimination rate. The sharp surge 
in EIR of about 140 bites/person/year in 2027 may have 
an impact on the control programme. This research 

Fig. 5 Comparison of spatial trends of EIR (83 × 81 pixels and each pixel is 36  km2), of RCP 2.6, 4.5 and 8.5
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State-wise mean EIR (per day per person) 
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provides policy-makers with insight into the strict imple-
mentation of the malaria elimination strategy [22]. It 
is quite interesting that a similar time-series analysis in 
recent research [23] also showed zero incidences can be 
achieved within 2030. Thus, this analysis will be an add-
on and vision to achieve zero malaria incidence targets.

Validation
The model is based on physical equations and clima-
tological parameters. Since it is an estimation of spatial 
EIR of each day at each grid level. Thus, to calibrate the 
model, the true climatological parameters from reanaly-
sis data (ERA5) for 2021 and 2022 are taken, and simu-
lations are carried out with these data sets. From Fig. 8, 
EIR was computed with ERA5 data and EIR from RCP 
2.6, RCP 4.5 and RCP 8.5 are subtracted from the EIR 
of ERA5 data. The maximum difference is ranged from 
-0.2 to 0.2 over the domain. The futuristic scenarios are 

underestimated in the East Coast region and slightly 
overestimated in the northeastern and at some parts of 
the West Coast.

Discussion
This study’s main objective is to project malaria’s proba-
bilistic EIR under conditions involving different possi-
ble emissions and corresponding radiative forcing. The 
prominent findings align well with previous research [20, 
24].

Earlier studies like that of [20] have quantified malaria 
risk using different projections (RCP 2.6, 4.5, 8.5), and 
their results are mostly consistent, even when using RCP 
2.5. However, it presents some noteworthy outcomes, 
indicating a decline in malaria risk.

Some of the conclusions suggest that the future cli-
mate may become less suitable for malaria vectors, which 
aligns well with other recent studies like those by [25, 26] 

Fig. 7 Regression models to historical data and future prediction

Fig. 8 Validation of EIR (83 × 81 pixels and each pixel is 36  km2), from real-time reanalysis data and future case scenarios
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and the study conducted by Sharma et al. [27] that dem-
onstrated a decline in malaria cases over the past decade. 
Nevertheless, the present findings offer more consistency 
in terms of monthly variations, highlighting the post-
monsoon period as the most suitable habitat for malaria 
transmission across India, consistent with [28–31].

Moreover, the spatial analysis also shows strong agree-
ment with a recent study by [20, 24], revealing high 
malaria risk in the east coast of India, with an average 
EIR exceeding > 0.4 bites per person per day. The shift 
of malaria risk towards eastern India is also predicted in 
earlier research, such as that by [12, 20].

There are a few limitations in implementing the model.

1. The noteworthy point is that our data is rescaled and 
taken from CMIP5 models over the domain, so spa-
tial bias [18] might exist.

2. Here, an interesting point is some prominent 
research [32, 33] corrected the biases and these pro-
cedures can be implemented in future research and 
can do sensitivity analysis.

3. The model was only well calibrated for An. culicifa-
cies, the true EIR might be more when including 
other vectors.

4. More spatial accurate models and more accurate 
population density models can be implemented.

5. Parametrization schemes to local topography and 
Indian climatic conditions can be modelled.

6. The initiative of the government such as zero inci-
dence policies will reduce malaria transmission sig-
nificantly but it will not be reflected in model.

Along with these limitations, the present study exclu-
sively focusing on the Anopheles species present in India. 
However, the model was originally calibrated for the 
African region where Anopheles gambiae is the prime 
vector, but the model still performed well at that site due 
to the environment’s suitability for that particular vector.

Conclusions
The observed decline in malaria risk is a positive devel-
opment, but it is essential to exercise caution, especially 
in areas with heavy rainfall. There is room to improve 
the model based on other CMIP 5 datasets with bet-
ter spatial accuracy. The inclusion of the future projec-
tion of the population dataset instead of census 2011 
may improve model accuracy. Since it is a mechanistic 
model and mostly relies on temperature and precipita-
tion, the results are limited to climatological conditions 
only. However, in real-time scenarios, there may be dif-
ferent spatial patterns based on other factors, such as 
low sanitation access areas with greater accumulation 
and states that poorly take care of mosquito mitigation 

strategies. Thus, human intervention may mostly 
modify results. Furthermore, observational studies 
are required to cross-validate and improve the models 
according to needs. In all odds, this research provides 
valuable insights for policy-makers, highlighting the 
need to implement future strategies to mitigate malaria 
risk effectively. By utilizing these findings, appropriate 
measures can be taken to combat the threat posed by 
malaria and protect public health.
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