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Abstract 

Background  As controlling malaria transmission remains a public-health challenge in the Brazilian Amazon basin, 
the National Surveillance System for Malaria (SIVEP-MALARIA) has registered malaria notifications for over fifteen years 
helping in the decision-making on control and elimination. As a surveillance database, the system is prone to report-
ing delays, and knowledge about reporting patterns is essential in decisions.

Methods  This study contains an analysis of temporal and state trends of reporting times in a total of 1,580,617 indi-
vidual malaria reports from January 2010 to December 2020, applying procedures for statistical distribution fitting. A 
nowcasting technique was applied to show an estimation of number of cases using a statistical model of reporting 
delays.

Results  Reporting delays increased over time for the states of Amazonas, Rondônia, Roraima, and Pará. Amapá has 
maintained a similar reporting delay pattern, while Acre decreased reporting delay between 2010 and 2020. Predic-
tions were more accurate in states with lower reporting delays. The temporal evolution of reporting delays only 
showed a decrease in malaria reports in Acre from 2010 to 2020.

Conclusion  Malaria notifications may take days or weeks to enter the national surveillance database. The reporting 
times are likely to impact incidence estimation over periods when data is incomplete, whilst the impact of delays 
becomes smaller for retrospective analysis. Short-term assessments for the estimation of malaria incidence from the 
malaria control programme must deal with reporting delays.
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Background
Malaria transmission remains a health challenge in the 
Americas despite the decrease in malaria burden during 
the 21st century. Brazil  had the second highest malaria 
incidence in this region in 2020 [1]. Brazil implemented 

the Epidemiological Surveillance System for Malaria 
(SIVEP-Malaria) that registers all malaria cases, and this 
system constitutes a critical tool in the Brazilian control 
and elimination programme [2]. Notifying Units (NU) 
report the malaria cases to the Municipal Health Depart-
ments (SMS) that provide malaria reports to the SIVEP-
Malaria, and this process can take several days in the 
Amazon Basin region, which accounts for 99% of malaria 
cases in Brazil [3, 4]. The delay in notifications between 
the eventual malaria cases and the reported cases in the 
surveillance system implies a challenge in the elimination 
programme, lagging responses to unusual transmission 
trends [5].
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A comprehensive analysis of notification periods over 
time and across the states that are part of the Amazon 
basin is lacking in understanding how malaria surveil-
lance provides timely information. Previous works have 
implemented technological and mathematical tools for 
predicting malaria cases using previous surveillance and 
climatic and socioeconomic data. Quan et  al. imple-
mented a technical framework of surveillance through 
nurse smartphones in South Africa following malaria 
reports at the time [6]. A set of models implemented 
statistical tools such as regressive models with time-
series, nonlinear models, and spatio-temporal models 
for estimating malaria cases using meteorological data 
and previous malaria reports for predicting high-risk 
areas and alerting for possible outbreaks in some coun-
tries of Africa and Asia [7–10]. Further, a set of previous 
works have analysed and predicted notification delays of 
malaria in Guyana and South Africa, correcting reporting 
delays using a nowcasting framework and an autoregres-
sive time-series [11, 12].

Here, the reporting times of malaria notifications were 
analysed with secondary data from the Brazilian sur-
veillance database (SIVEP-malaria). The distribution of 
reporting times was fitted to statistical distributions for 
exploring reporting delays of malaria in the Brazilian 
Amazon basin across states and over time. A Bayesian 
hierarchical model was applied to demonstrate the effect 
of correcting (nowcasting) the reporting delays as Bastos 
et al. [13].

Methods
Epidemiological data
A dataset of 1,580,617 individual malaria reports from 
January 2010 to December 2020 in the Brazilian Ama-
zon region was obtained from the Brazilian Information 
System of Epidemiological Surveillance (SIVEP). This 
dataset accounts for the state, municipality, notification 
date, symptoms date, and reporting date [4]. The report-
ing delays were calculated by the difference between the 
reporting date and notification date using the individual 
reports from the states of Amazonas (AM), Acre (AC), 
Roraima (RR), Rondônia (RO), Pará (PA), and Amapá 
(AP). As a result, 82,172 reports were excluded by sur-
passing 182 days of delay (unusual reports), and 70 were 
excluded by inconsistent dates, i.e., later notification date.

Distribution fitting
Different distributions were fitted to data of report-
ing times by each state per year, estimating distribution 
parameters, such as means and standard deviations. This 
approach allows exploring the changes in reporting delay 

by state per year. The tested distributions were Weibull 
and Gamma for fitting all reporting delays due to the pro-
ficiency of these distributions for describing distributions 
with positive skewness and kurtosis as the empirical distri-
butions of reporting delay.

The distributions were fitted by maximum likelihood 
estimation function (MLE) L(θ) using a parametric distri-
bution f (.|θ) with parameters θ ∈ R (Eq. 1):

for n observations xi of reporting times and f (.|θ) distri-
bution function.

The numerical analysis involved Nelder-Mead, quasi-
Newton and conjugate-gradient algorithms for the distri-
bution fitting of the MLE function. The implementation 
involved the fitdistr function with optim function in R 
to obtain θ parameters of f (xi|θ) that maximize MLE func-
tion [16, 17]. Therefore, we fitted 66 sets of parameters with 
these distributions describing reporting delays for six states 
(AM, AC, RR, RO, AP, and PA) per 11 years (2010-2020). 
The MLE function obtained shape and scale parameters 
for Weibull distribution, and shape and rate parameters for 
Gamma distribution by each state.

Bayesian model for predictions
The Bayesian model from Bastos et al. [13] was applied for 
correcting reporting delays, estimating the random vari-
able nt,d that accounts for the number of malaria events 
occurred at time t = 1, 2, ...,T  , but reported with delays of 
d = 1, 2, ...,D time units [13], where T represents the time 
step with data availability and D represents the maximum 
allowed delay. nt,d was modelled using a negative binomial 
distribution with mean �t,d and scale φ (see Eq. 2)

The choice of prior distributions for φ was exponential 
distribution Exp(0.1) with mean 10 and standard devia-
tion 10. The expression for log(�t,d) captures temporal 
variability (see Eq. 3):

where µ is the overall mean at the log-scale, αt is the ran-
dom effect that captures the mean structure of temporal 
evolution, βd is the random effect that captures the mean 
structure of delay, and γt,d is the random effect that cap-
tures the time-delay interaction. αt , βd and γt,d were mod-
elled using random walks in order 1 (see Eq. 4, 5 and 6).

(1)L(θ) =

n∏

i=1

f (xi|θ),

(2)nt,d ∼ NegBin(�t,d ,φ) �t,d > 0,φ > 0.

(3)log(�t,d) = µ+ αt + βd + γt,d + ηw(t),

(4)αt ∼ N (αt−1, σ
2
α ), t = 2, 3, ...,T .
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Half normal HN(τ 2 ) prior distributions were assumed 
for σα , σβ and σγ using the means in logarithm scale 
τ = 1 for βd , and τ = 0.1 for αt and γt,d . ηw(t) is the ran-
dom effect that captures the weekly seasonal component 
with w(t) = 1, ..., 52 weeks. Parameter ηw(t) is defined as 
a second-order random effect (see Eq. 7) adopting a half 
normal HN(1) prior distribution with τ = 1 for ηw(t).

The estimation procedure with the Bayesian model is 
implemented adopting the Integrated Nested Laplace 
Approximation (INLA) with INLA package in R [18, 19]. 
The value of T is generally applied to the epidemiological 
week of interest for prediction and D = 26 , except stated 
otherwise.

(5)βt ∼ N (βt−1, σ
2
β ), d = 2, 3, ...,D.

(6)γt,d ∼ N (γt−1,d , σ
2
γ ).

(7)ηw ∼ N (2ηw−1 − ηw−2, σ
2
η ).

Results
Reporting times varied between 0 and 16 weeks with 99% 
confidence in all states in the Amazon basin. Delay dis-
tributions in Acre (AC) and Amazonas (AM) presented 
most of the reports in less than two weeks (see Fig.  1).  
Delay distributions in Roraima (RR), Rondônia (RO), 
Pará (PA), and Amapá (AP) presented more variability 
than AC and AM, with delays over two weeks with higher 
frequencies. Also,  delay  distributions in RR, PA, and 
RO also showed more variability in 2020 than in previ-
ous years. Delay distribution in AM and AP presented a 
similar variability over the years, and RR presented dis-
tributions moved to the right, evidencing an increase in 
reporting delay. The distribution in AC in 2020 moved to 
the left, implying a reduction in reporting delays in this 
state.

The average reporting delays were above eight weeks 
in several municipalities between 2010, 2015, and 2020 
(Fig. 2). Average delays above eight weeks were mainly in 
RR, northwest of AM, south, and northwest of PA, and 

Fig. 1  Delay-distribution fitting per State during 2010, 2015, and 2020. Complete blue lines represent Weibull distribution fitting, dotted red lines 
represent Gamma distribution fitting, and bars represent real data
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west of AP in 2020. RR evidenced an increase in the aver-
age delay in multiple municipalities from 2010 to 2015. 
AM also evidenced an increase in the average delay in the 
municipalities in the northwest region. Although average 
delays decreased in PA from 2010 to 2015, some munici-
palities increased the average delay in 2020. PA also evi-
denced an increase in municipalities without malaria 
reports (white regions) in the west of PA in 2020 despite 
the increment in the average delay in the other munici-
palities of this state. AC did not exhibit a decrease in 
the average delay in all points. Still, the average delays 
decreased in the east region (Mâncio Lima and Cruzeiro 
do Sul), linking with the results in Fig. 1, because the east 
region accounts for most of the malaria cases in AC. RO 
and AP evidenced high delays in the western regions, and 
AP evidenced an increase compared from 2010 to 2015.

A similar pattern of reporting-delay distribution is 
observed in AM, AC, RO, and AP states with positive 
asymmetry and skewness coefficients illustrating the 
tendency to low delays using Weibull and Gamma dis-
tributions (see Figs.  1 and 3). This pattern of distribu-
tion fitting was also found in RR and PA, only in 2020, 
because the skewness of the distribution observed in 
these states was different in 2010 and 2015. Distributions 
only exhibited a decrease in the delay mean and standard 

deviation in AC, evidencing a decline in reporting delays 
in that state. Delay distributions in AM and RO indicated 
increases in the mean and standard deviation of delays 
across the time at these states. Delay distributions in 
RR and PA also exhibited increases in delays’ mean and 
standard deviation. Still, these states presented a greater 
increase in the mean and standard deviation compared 
to other ones. Finally, the delay distribution in AP exhib-
ited a similar mean and standard deviation in 2010 and 
2020 and a decrease in the mean and standard deviation 
in 2015.

The Bayesian model obtained accurate predictions 
anticipating the malaria reports, mainly in states with 
lower reporting delays (see Fig.  4). The model obtained 
the best-adjusted prediction in AC and AP, states those 
presented the least reporting delays before 15st and 30th 
epidemiological weeks in 2020. Conversely, the model 
obtained the least adjusted prediction in RR and PA, 
which presented the greatest reporting delays. Still, the 
trends from model predictions cases were similar, as seen 
in the 30th week for PA. Moreover, the prediction inter-
val permitted estimating a scenario with a higher num-
ber of cases that contained the eventual cases illustrating 
the use of the Bayesian model predicting malaria cases on 
different levels of reporting delay.

Fig. 2  State units of the Brazilian Legal Amazon and average delays in weeks per municipality in years 2010, 2015 and 2020
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Discussion
The accumulated reporting delays increased over time for 
the states of Amazonas, Rondônia, Roraima, and Pará. 
Amapá has maintained a similar pattern of reporting 
delay while reporting times decreased in Acre between 
2010 and 2020. Nevertheless, the average delays per 
municipality evidenced an increase in the municipali-
ties with delays above eight weeks in Roraima, Amazo-
nas, and Pará in this period. In general, states with lower 
reporting delays had more accurate predictions.

The increase in reporting times in most Amazon-basin 
states, except Acre, evidenced that the surveillance sys-
tem of Brazil still needs to accomplish international 
standards. Braz et  al. found that recording notification 
in the Amazon region was below international stand-
ards in the timelines in malaria notification between 
2003 and 2012, and Fig. 3 illustrates that reporting delay 
experimented increases the mean and standard deviation 
in 2020 in comparison to 2010 in most of the states [3]. 
Although the COVID-19 pandemic in 2020 might also 
help to enlarge reporting times in the Amazon basin due 
to the priorities in COVID-19 attention, Fig. 3 illustrates 

the increases in mean and standard deviation before 
COVID pandemic [22]. The malaria rebound between 
2017 and 2019 might also explain the rise in reporting 
delay compared to previous years that obtained fewer 
cases [23]. Geographical exploration of the average 
reporting times suggests an expected higher reporting 
times in municipalities located in isolated areas, i.e., far 
from medium and large cities such as state capitals. The 
Brazilian Amazon Basin covers a large area with several 
municipalities with difficult access to notifying malaria 
cases. More studies with variables describing health 
access and surveillance limitations can help to determine 
the impact due to such factors.

Roraima and Pará obtained the highest mean in report-
ing delay in 2020, implying the least accurate predic-
tions in the Bayesian model, and socioeconomic factors 
in border areas might explain this situation. The North 
region of Roraima borders Venezuela and Guyana, and 
the increase of migrants seeking a job in this region 
has implied an increase in epidemic peaks, showing the 
necessity of improving surveillance systems in border 
areas [21]. One of the principal challenges in malaria 

Fig. 3  Mean and standard deviation of reporting delay from fitted distributions per year
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elimination and control is human mobility in border 
areas, and surveillance systems must extend efforts to 
maintain available data in real-time between countries 
in the Amazon region [24, 25, 27, 31]. The unexpected 
increase of malaria cases in Pará from 2016 to 2018 might 
explain the rise in reporting delays in this region despite 
the mean and standard deviation of delay in 2019 being 
the least since 2010 [28].

The malaria surveillance system in Brazil has pre-
sented two challenges: recording errors and report-
ing delays. A previous study in the state of Amazonas 
showed that epidemic fluctuations influenced recording 
errors, and our predictive model might help to estimate 
a more accurate report during malaria epidemics [20]. 
On the other hand, the priorities of notification agents 
in other activities, the bureaucratic fill-in process, some 
missing attributes in the reports, and erroneous data in 
patient declaration might increase the delay in the noti-
fication process, impacting data quality [3]. Likewise, an 
anticipated reporting of malaria cases from the current 
model might help to establish rapid priority control and 

elimination plans such as vector control [26]. In fact, pre-
dictions from the model output are generally close to the 
final number of cases, even though the model achieved 
more accurate predictions with low reporting delays, as 
the time series in Acre showed. The random effects indi-
rectly capture possible heterogeneities due to organiza-
tional difficulties in reporting, even without a particular 
variable to describe such factors.

The prediction from the model implementation is 
based on previous and current reports using interactions 
with the seasonal behavior of malaria, time-independent 
behaviour, reporting delay behaviour, and time-delay 
interaction. The analysis structure is based on the Bastos 
et al. model that joins the interactions with co-variables 
and the effect of the spatial distribution of delays for den-
gue and Severe Acure Respiratory Infections in public 
surveillance databases [13]. Likewise, Tigis et  al. found 
spatial heterogeneity in reporting delays of malaria cases 
in Guyana, implying the necessity of involving a spatial 
interaction for obtaining more accurate predictions [29]. 
On the other hand, Thwing et al. corrected malaria inci-
dence by considering suboptimal rates of care-seeking 

Fig. 4  Model predictions in 2020. This figure illustrates model predictions in the 15th and the 30th epidemiological weeks in 2020. These weeks 
represent different seasonal moments. Black lines represent the eventually reported cases, red dotted lines represent the current reported cases and 
blue dotted lines represent model predictions. Light blue regions represent the prediction intervals
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and testing delays instead of analysing delay interaction 
over time [30]. Although the current model has not had 
a spatial interaction and suboptimal reporting rates, this 
approach can help surveillance efforts since the model 
only requires previous reports.

Malaria reports in the Brazilian Amazon Basin have 
presented reporting delays in most states, and the tem-
poral evolution of reporting delays only showed a 
decrease in malaria reports in Acre from 2010 to 2020. 
Consequently, assessments from the malaria control pro-
gramme over short terms must deal with reporting delays 
(nowcasting). Therefore, modelling tools such as Bayes-
ian models might provide reliable predictions allowing 
rapid responses to malaria epidemics and improving 
elimination efforts.
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