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Abstract 

While significant advances have been made in understanding Plasmodium falciparum gametocyte biology and its 
relationship with malaria parasite transmission, the gametocyte sex ratio contribution to this process still remains a 
relevant research question. The present review discusses the biology of sex determination in P. falciparum, the under-
lying host and parasite factors, the sex specific susceptibility to drugs, the effect of sex ratio dynamics on malaria 
parasite transmission and the development of gametocyte sex specific diagnosis tools. Despite the inherent differ-
ences across several studies and approaches, the emerging picture highlights a potentially relevant contribution of 
the P. falciparum gametocyte sex ratio in the modulation of malaria parasite transmission. The increasing availability 
of molecular methods to measure gametocyte sex ratio will enable evaluation of important parameters, such as 
the impact of drug treatment on gametocyte sex ratio in vitro and in vivo as well as the changes of gametocyte sex 
ratios in natural infections, key steps towards elucidating how these parameters affect parasite infectiousness to the 
mosquito vectors.
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Background
Despite the recent public health effort, malaria remains 
one of the leading causes of death worldwide [1]. In the 
global effort aiming at disease elimination and marked 
by the use of effective anti-malarial drugs and insecti-
cide-treated nets (ITNs), the Plasmodium gametocytes 
deserve a special attention, being the parasite blood 
stages responsible for human to mosquito parasite trans-
mission [2]. Developing effective strategies to control 
malaria disease and block parasite transmission requires 
further understanding of the genetic determinants gov-
erning the parasite life cycle between vertebrate human 
hosts and female Anopheles mosquito vectors.

In the human host, a fraction of Plasmodium falcipa-
rum blood asexual stage produces sexual stages, male 
and female gametocytes. In this parasite, gametocy-
togenesis requires a comparatively more extended period 
(8–12  days) than in other human malaria parasite spe-
cies [3, 4], in which five stages (I to V) of morphologi-
cal development are routinely classified [5]. Gametocyte 
stages I to IV were reported to sequester in deep organs 
(bone marrow and spleen) while stage V gametocytes 
are found in the peripheral blood [6] where they take an 
additional 3 days to become infectious to mosquitoes [7–
10]. Malaria parasite transmission requires the presence 
of both sexes of gametocytes for fertilization, eventually 
producing new parasite stages (the sporozoites) where 
genetic recombination has occurred and determines the 
genetic make-up of the parasite offspring [11].

During malaria infections, P. falciparum the rate of 
gametocyte production is influenced by several fac-
tors, both from the human host [4, 11] (haemoglobin 
level [12–14], host immunity [15, 16], anti-malarial drug 
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treatment [17–19]) and from the parasite (genetic diver-
sity of infection [20] or mixed infection [21, 22], asexual 
stage densities [23]). In several cases these studies have 
not concomitantly investigated whether and how these 
factors also modified the gametocyte sex ratio, which is 
defined as the ratio of the number of male gametocytes 
over female gametocytes and which is typically female 
biased in Plasmodium parasites [24]. Evidence of factors 
influencing the gametocyte sex ratio derives from con-
trolled infections mainly on rodent parasites and from a 
few studies of P. falciparum natural infections or clinical 
trials.

The impact of anaemia on gametocyte sex ratio was 
experimentally shown in rodent and avian Plasmodium 
parasites [25–28] and in studies on P. falciparum infected 
children [14, 29]. A role of immunity was documented in 
P. falciparum infected children [30], whereas a modified 
gametocyte sex ratios was described upon drug treat-
ment of P. falciparum infections [31, 32].

In vitro assays on P. falciparum gametocytes sug-
gested that male gametocytes are more vulnerable to 
anti-malarial drugs than female gametocytes [33]. This 
effect has been recently investigated in vivo in clinical tri-
als assessing the effect of combination drug treatments 
including primaquine or methylene blue. In both com-
bination treatments these drugs were shown to inhibit 
parasite transmission and also to affect the gametocyte 
sex ratio, although in opposite directions, with methylene 
blue proposed to be more active on male gametocytes 
and primaquine on female gametocytes [34].

The present work aims to review studies on P. fal-
ciparum gametocyte sex determination, highlighting 
unanswered questions relevant to better understand 
consequences of sex ratio changes on the modulation of 
parasite transmission.1

Sex determination in Plasmodium falciparum
During malaria infection, the parasite is faced with a 
resource allocation trade-off between investing in asexual 
proliferation for in-host survival or in sexual differentia-
tion for between-host transmission [11].

The development into a male or a female gametocyte in 
Plasmodium is not determined by sex chromosomes as a 
single haploid parasite can generate both sexes [24, 35]. 
Functional investigations on the mechanism(s) of para-
site commitment to sexual differentiation have shown 
that the expression of the PfAP2-G transcription factor 
is required for the transcriptional activation in stage I 
gametocytes of genes encoding early gametocyte specific 

proteins, such as Pfs16, PfMdv-1/peg3, Pfpeg4 and Pfg27, 
and for gametocyte production [3, 36–39]. Activation of 
pfap2G expression requires the release from epigenetic 
chromosomal silencing of the pfap2G locus orchestrated 
by the interaction of the nuclear proteins PfGDV-1 and 
HP1 [40, 41]. The first marker of gametocytogenesis in 
both male and female gametocytes is the expression and 
export in the red blood cell cytoplasm of the parasite 
protein Pf Gametocyte Exported Protein-5 (PfGEXP5) 
as early as 14  h post red blood cells invasion [42]. The 
observation that the expression of pfGEXP5 is PfAP2-G 
independent [42] and that a limited gametocyte tran-
scriptional program is also initiated in a natural PfAP2-G 
mutant parasite line [43] altogether suggest that entry in 
and/or progression of sexual differentiation may involve 
additional, PfAP2-G independent, mechanism(s).

Independent investigations on P. falciparum commit-
ment to the production of male and female gametocytes 
indicated that distinct subpopulations of schizonts pro-
duce a homogeneous progeny of either all male or all 
female gametocytes [44, 45]. This is consistent with pre-
vious evidence that individual P. falciparum schizonts are 
alternatively committed to either gametocyte produc-
tion or to further asexual multiplication [46] and that, 
in transgenic pfAP2-G-tagged parasites, schizonts are 
distinguishable for containing either all PfAP2-G positive 
or all AP2-G negative merozoites [47, 48]. This mecha-
nism of gametocyte sex commitment implies that P. fal-
ciparum modifies sex ratio by changing the proportion 
of schizonts committed to male or female gametocyte 
production. Considering also the long time required for 
P. falciparum gametocytes to be mature for fertilization, 
parasite sex ratio adjustment in response to any given 
factor appears to be a slow process, indeed appreciable 
over long infection times.

To partly correct this picture, recent reports showed in 
Plasmodium berghei and in P. falciparum that induction 
or stabilization of AP2-G expression early after mero-
zoite invasion can redirect differentiation of the newly 
invaded parasite towards becoming a gametocyte [48, 
49]. If this modulation also applied to sex determination 
and occurred in natural infections, this would introduce 
a slightly higher flexibility in the parasite adaptive mecha-
nism to govern its sex ratio. In any case, the above inves-
tigations altogether indicate that the gametocyte sex is 
determined very early, and possibly at the same time, of 
the parasite commitment to sexual differentiation.

In P. falciparum, the morphological differences 
between male and female gametocytes appear as early as 
stage III [50], approximately 4 days post red blood cells 
invasion. ‘Omics’ analyses of purified female and male 
gametocytes marked by specific fluorescent reporters 
in P. berghei [51] and in P. falciparum [52] showed that 

1 While this manuscript was in preparation, the topic of this review was cov-
ered by an excellent review by Tadesse et al. [103].
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sexual dimorphism is based on major differences in the 
transcriptomes and proteomes of the two sexes, which 
are responsible for the divergent physiology of male 
and female gametocytes geared to achieve gamete ferti-
lization in the mosquito host and essential for life cycle 
progression [51, 52]. In P. falciparum, 247 out of 2110 
proteins were found to be differently expressed between 
sexes, 206 in male and 41 in female gametocytes [52]. 
Proteins expressed exclusively in male gametocytes were 
mainly annotated as involved in genome replication and 
formation of eight motile gametes, whereas the female 
specific proteins were associated with metabolism, trans-
lation and organelle functions [51–53].

In some cases, proteins previously described as game-
tocyte specific were reported to have sex specific roles, 
such as Pfg377 [54], involved in the production of osmio-
philic bodies [55], produced in female gametocytes since 
the stage III [56], the 6-cysteine domain protein Pfs47, 
expressed exclusively in female gametocytes from stage 
II [57], and the gamete surface protein Pfs25 [58], whose 
transcript has been the first marker used to quantify P. 
falciparum female gametocytes in reverse transcriptase 
quantitative PCR (qRT-PCR) [59]. This analysis also con-
firmed the male gametocyte specific expression of the 
Pfs230 protein, expressed in stages IV–V [60], whose 
transcript has been used to quantify male gametocytes in 
RT-PCR assays [59].

On the other hand, proteins expressed in both game-
tocyte sexes have been proposed to play a sex specific 
role in male gametocytes, such as Pfs48/45, expressed on 
the gametocyte surface from stage II [61], whose abla-
tion reduced only male gamete ability to penetrate female 
gametes [57], or the regulatory protein PfPuf2, whose 
ablation showed a phenotype only in the differentiation 
of male gametocytes [62].

Of specific relevance for the ability of male and female 
gametes to produce and respond to external cues in 
order to fertilize and to produce a viable diploid mos-
quito stage, the above ‘omics’ analyses revealed, both in 
P. berghei and P. falciparum, a sex-specific distribution 
of signaling proteins such as kinases and phosphatases 
[51, 52]. Five protein kinases and ten phosphatases were 
identified as upregulated in P. falciparum female gameto-
cytes, whereas ten kinases and three phosphatases were 
upregulated in male gametocytes [52]. In P. berghei, two 
kinases were identified to be female gametocyte specific 
whereas two kinases and four phosphatases were specific 
to male gametocytes [51].

Host and parasite factors affecting Plasmodium 
gametocyte sex ratio
The female biased sex ratio in Plasmodium parasites 
[63–65] is intuitively explained as a way to optimize 

fertilization since a single male gametocyte produces 
eight flagellated microgametes, a feature particularly 
important when gametocyte densities become critically 
low [17]. The gametocyte sex ratio can nevertheless be 
affected by human as well as parasite factors through 
mechanisms that still need to be elucidated [25, 45, 66].

Several investigations proposed a role of human host 
factors, such as anaemia and immunity [11, 67–70] and of 
parasite factors such as asexual parasite density [4], para-
site diversity [71] and competition, as well as the duration 
of malaria infection [12, 72–74]. Anaemia, a factor asso-
ciated to malaria, was shown to affect parasite sex alloca-
tion not only through increased gametocyte production 
but also through a more male-biased sex ratio [25, 27], 
with the erythropoietin (Epo) hormone, an erythropoie-
sis inductor, being shown in rodent and avian malaria 
parasites to play a role in the male biased shift of sex ratio 
[25]. Anaemia was also described to prolong the survival 
of male gametocytes, favoring malaria transmission [69].

In addition to host factors involved in erythropoiesis 
and anaemia, the immune response developed against 
asexual parasites and gametocytes has been proposed 
to affect sex ratio as the proportion of male gametocytes 
was reported to increase in prolonged malaria infec-
tions [75]. This might be viewed as a parasite evolution-
ary strategy to increase proportion and total number of 
the cell type more vulnerable to antibody attack. Indeed, 
although antibodies against gametocyte surface antigens, 
acting only after gamete egress from the erythrocyte in 
the mosquito gut [76, 77], affect both sexes (e.g. by effi-
ciently agglutinating gametes), they are particularly effec-
tive against the short lived, motile male gametes [76]. A 
higher rate of non-synonymous vs synonymous muta-
tions was calculated in the coding sequences of male 
expressed genes, revealing that male gamete antigens 
undergo a comparatively faster adaptive evolution than 
other parasite antigens [78]. This may represent an addi-
tional, complementary strategy to protect male gametes 
from the mounting immune response.

One parasite factor affecting sex ratio is the competi-
tion between parasite clones [20, 30, 79]. It has been 
observed in multiclonal P. falciparum infections that 
each parasite clone produces a more male biased game-
tocyte population [30], indicating that competition 
between clones may favor a more even sex ratio, which 
was interpreted as a way to maximize each clone fertiliza-
tion efficiency [30, 35, 80]. In human malaria infections, 
the presence of multiple genotypes may be explained by 
either subsequent infections or simultaneous acquisi-
tion of multiple clones from a single mosquito bite [81]. 
Understanding how the genetic complexity of co-infect-
ing parasite clones and the subsequent changes in sex 
allocation strategies may influence parasite infectivity to 
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mosquitoes is a major goal to elucidate malaria parasite 
transmission dynamics.

Gametocyte sex specific susceptibility to antimalarial 
drugs
Anti-malarial drug treatments aim to cure malaria infec-
tions as rapidly, reliably and safely as possible [82] and 
are for this reason targeted to hit the asexual pathogenic 
forms of the parasite. However, anti-malarial drugs, 
including artemisinin derivatives, are generally less or 
not at all effective on gametocytes [83–85]. Treatment 
failure is associated to an increased gametocyte carriage 
and clinical observations revealed that chloroquine and 
sulfadoxine-pyrimethamine post treatment gametocytae-
mia can be considered as an early parasitological indica-
tor of reduced drug sensitivity [19, 86, 87].

In the context of malaria elimination and eradication, 
the need of targeting gametocytes, in P. falciparum so 
far attacked only by primaquine, is widely recognized. 
In vitro assays testing a panel of anti-malarial drugs on 
P. falciparum and P. berghei gametocytes indicated that 
male gametocytes show a higher vulnerability than 
females to drug treatment [33], leading to suggest the 
strategy of targeting this minority fraction of more sus-
ceptible sexual stages, yet required for fertilization, to 
efficiently limit malaria parasite transmission [88].

This issue is now being addressed in in vivo settings. 
Reports evaluating gametocyte clearance by anti-malar-
ial drugs and sex specific densities could not find sig-
nificant changes in gametocyte sex ratio [30, 89]. On the 
other hand, two recent clinical trials studied the effect of 
anti-malarial drugs on gametocyte sex ratio in  vivo and 
concluded that treatments produced in both instances a 
shift in the gametocyte sex ratio. One clinical trial was 
conducted in Kenya with 120 infected children from an 
area of moderate malaria transmission. RT-qPCR assays 
amplifying the female marker pfs25 and the male marker 
pfGMET were used to measure the gametocyte sex ratio 
after a dihydroartemisinin-piperaquine treatment alone 
or combined with primaquine. In both cases male game-
tocytes appeared to be cleared more slowly than females, 
resulting in a male shifted sex ratio [32]. Another clini-
cal trial was conducted in Mali on 80 infected males aged 
5 to 55 from a hyperendemic, highly seasonal malarious 
region. The same assays were used to measure effect on 
gametocyte sex ratios of the addition of primaquine to a 
sulfadoxine-pyrimethamine and amodiaquine treatment 
and of the addition of methylene blue to a dihydroarte-
misinin-piperaquine treatment. The significant decrease 
in overall gametocyte density associated in particular to 
the treatment with methylene blue was in this case asso-
ciated with a strongly reduced circulation time of male 
gametocytes and an increased female sex ratio [32, 34]. 

In this study, effect of the different drug regimens on 
parasite transmission was assessed by measuring the 
proportion of mosquitoes that became infected after 
feeding on blood samples of the trial participants taken 
before and after 2 and 7  days from treatment. Interest-
ingly, a significant decrease of infection prevalence was 
observed already after 2 days of the treatments including 
primaquine and methylene blue, when however game-
tocyte density (by microscopy) and proportion of male 
and female gametocytes (by RT-qPCR assays) were not 
affected. This result, which confirmed previous obser-
vations on the activity of primaquine [85] was recently 
interpreted as an evidence of an early sterilizing effect 
on gametocytes of the two drugs, whose transmission-
blocking effects precede gametocyte clearance [90]. As 
the latter assays measure density of male and female 
gametocytes amplifying sex specific transcripts, it is pos-
sible that the target mRNAs persist in morphologically 
detectable, but likely damaged or dead gametocytes, 
affecting the assay predictability of parasite viability. This 
suggests that evidences of gametocyte sex specific drug 
susceptibility have to be object of additional studies and 
of independent molecular and cell-based assays. This also 
calls for the urgent need of reliable molecular markers 
of gametocyte fitness, predictive of mosquito infectious-
ness, in whose absence xenodiagnosis remains of key 
importance to assess transmission-blocking properties of 
anti-malarials.

Development of gametocyte sex specific diagnostic tools 
and application in investigating sex ratio dynamics
The identification of gametocyte carriers is important for 
determining the sources of infection in a community, but 
gametocyte presence and concentration are not linearly 
predictive of parasite infectiousness to mosquito. Meas-
uring gametocyte sex ratio may, therefore, provide a dif-
ferent, possibly more predictive, parameter for mosquito 
infectivity to be used in improved control strategies. 
Early studies in endemic areas that included gameto-
cyte sex ratio assessments have used laborious micros-
copy techniques [69, 89]. However, a critical issue is that 
identification and counts of male and female gameto-
cytes relied upon inspection of Giemsa stained smears 
by conventional light microscopy and by sexing gameto-
cytes by the pink or blue color of the cytoplasm of male 
and female gametocytes, respectively. Obviously, these 
measurements could be performed only in microscopy 
positive slides, with densities of at least ten gametocytes/
µl [14, 30], and prevented measuring sex ratio in infec-
tions with submicroscopic gametocyte carriages [91, 92]. 
To overcome this problem, in addition to improving the 
molecular tools to detect parasitaemia and overall game-
tocytaemia [81, 93], methods have been developed in the 
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past few years to specifically detect and quantify male 
and female gametocytes, based on the reverse transcrip-
tion and polymerase chain reaction (RT-PCR) amplifica-
tion of gametocyte sex specific transcripts.

The first study was the report by Schneider et al. [59], 
which used the pfs25 and pf230p mRNAs as female and 
male markers, respectively, to be amplified in P. falcipa-
rum mature gametocytes. These genes were chosen due 
to their expression during late stage gametocytes and, 
as pfs25 shows a limited polymorphism, this marker is 
currently used to quantify gametocytes from field iso-
lates, also relying on the fact that female gametocytes are 
generally the more abundant sex [59, 94, 95]. The tran-
scriptomics analysis of purified male and female game-
tocytes [52] provided additional sex specific transcripts 
as reagents in improved sex specific q-RT-PCR diag-
nostic assays. The pf13 (PF3D7_1311100) and the pfGK 
(PF3D7_1351600) mRNAs were used as male and female 
gametocyte specific markers in a homogeneous SYBR-
Green q-RT-PCR assay, utilized to measure gametocyte 
sex ratio in epidemiological samples from Burkina Faso 
[96]. A novel male gametocyte marker, pfMGET (Plas-
modium falciparum male gametocyte-enriched tran-
script, PF3D7_1469900), was also described in a novel 
gametocyte sex specific RT-PCR assay [32]. To overcome 
the limitation that separate quantification of male and 
female gametocytes could bias the reliable determina-
tion of sex ratio, a novel multiplex assay was developed, 
using the above pfMGET mRNA and the female pfCCp4 
(PF3D7_0903800) transcript. An important improvement 
in this assay, besides multiplexing, was that both tran-
scripts are amplified from an intron containing region, 
which enables quality control of the amplification prod-
uct and avoids DNAseI sample treatment [97].

The effect of Plasmodium gametocytes sex ratio on malaria 
parasite transmission
Gametocyte sex ratio has been shown to be under strong 
selection pressure both as an adaptive response to a 
worsening blood environment for transmission and to 
the number of co-infecting clones in vertebrates [11, 28, 
79]. However, the impact of sex ratio dynamics on the 
transmission success of P. falciparum is still far from 
being fully explained and represents a major challenge 
in translating sex ratio measurements into prediction of 
parasite transmissibility.

Some in  vitro [98] and in  vivo infections [65] stud-
ies have shown that a higher male sex ratio was more 
infectious to mosquitoes. As the gametocyte sex ratio 
becomes significantly male biased when gameto-
cytes density is low [64, 99, 100], it is critical to eluci-
date the functional relationship between sex ratio and 
gametocytes density. In this respect, the analysis of 

gametocyte sex ratios and of the resulting mosquito 
infectivity data from 148 feeding experiments on natu-
rally infected gametocyte carriers in Mali, Burkina Faso 
and Cameroon importantly showed that male gameto-
cyte presence becomes critically important only at low 
gametocyte densities [101].

Integrating the information gained in epidemiological 
studies and clinical trials on microscopy-positive and 
sub-microscopic gametocyte densities and on gameto-
cyte sex ratios using the recently developed q-RT-PCR 
techniques will be of key importance to investigate fac-
tors affecting malaria transmission at the population 
level.

Conclusion
In recent years, the challenge to eliminate malaria 
focused on the control of malaria parasite transmission 
and highlighted the gametocytes and their biology as 
a crucial objects of investigation. The development of 
molecular tools based on gametocyte sex specific mark-
ers is increasingly pairing with novel relevant bioas-
says for the assessment of gametocyte functionality and 
viability [102]. Altogether these tools will enable us to 
understand if and how some anti-malarial drugs differ-
entially affect mature male and female gametocytes in 
natural infections and in laboratory settings. The main 
challenge of these assays is to what extent they are and 
will be able to translate determination of gametocyte 
numbers into measurements of gametocyte fitness. This 
will be critical to confidently use gametocyte sex ratio 
to predict parasite infectiousness to mosquito, with an 
obvious impact on our ability to implement appropriate 
and effective measures to block parasite transmission.
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