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Abstract
There is currently renewed interest in assessing the feasibility of the sterile insect technique (SIT)
to control African malaria vectors in designated areas. The SIT relies on the sterilization of males
before mass release, with sterilization currently being achieved through the use of ionizing
radiation. This paper reviews previous work on radiation sterilization of Anopheles mosquitoes. In
general, the pupal stage was irradiated due to ease of handling compared to the adult stage. The
dose-response curve between the induced sterility and log (dose) was shown to be sigmoid, and
there was a marked species difference in radiation sensitivity. Mating competitiveness studies have
generally been performed under laboratory conditions. The competitiveness of males irradiated at
high doses was relatively poor, but with increasing ratios of sterile males, egg hatch could be
lowered effectively. Males irradiated as pupae had a lower competitiveness compared to males
irradiated as adults, but the use of partially-sterilizing doses has not been studied extensively.
Methods to reduce somatic damage during the irradiation process as well as the use of other agents
or techniques to induce sterility are discussed. It is concluded that the optimal radiation dose
chosen for insects that are to be released during an SIT programme should ensure a balance
between induced sterility of males and their field competitiveness, with competitiveness being
determined under (semi-) field conditions. Self-contained 60Co research irradiators remain the
most practical irradiators but these are likely to be replaced in the future by a new generation of
high output X ray irradiators.

Background
The sterile insect technique (SIT) for mosquitoes includes
the mass production, sex separation, sterilization and
release of sterile males. Contemporary methods available
to induce sterility in the released insects are ionizing radi-
ation or chemosterilization. Chemosterilants were used
experimentally and in field trials in the 1960-70s against
mosquitoes [1,2] but they were mutagenic, and thus pre-
sented a potential hazard to humans during the treatment
process (but see [3]). Their use was discontinued after

concerns were raised about the effect of residues in the
environment and on non-target organisms, particularly
when large numbers of treated insects were released [4].
These concerns were based mainly on the findings of one,
so far un-replicated, study that found that spiders fed on a
diet of only chemosterilized mosquitoes subsequently
became sterile [5]. Although the amount of residue
released in the environment was very low, due to the care-
ful rinsing of pupae [6], ionizing radiation has become
the principal technique for sterilization, even though it
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has been reported to reduce competitiveness of the males
more than chemosterilization [2,7]. However, successful
SIT programmes for the elimination of the New World
screwworm Cochliomyia hominivorax from the USA, Cen-
tral America [8] and Libya [9] and the tsetse fly Glossina
austensi from Zanzibar [10] relied on radiation-sterilized
insects, as well as the ongoing SIT programmes against the
Mediterranean fruit fly Ceratitis capitata from Central and
Latin America [11].

A variety of novel sterilization methods based on trans-
genesis are currently under development [12,13] and are
discussed in detail in [14]. However, for mosquitoes,
many of these technologies are still in the experimental
phase and little regulatory framework exists for the intro-
duction of transgenic mosquitoes into the wild [15]. The
aim of this paper is to give an overview of irradiation stud-
ies performed on anopheline mosquitoes, together with
some information from other insects. No attempt is made
to review all the available literature on anopheline irradi-
ation but rather to set a baseline for future work on this
subject.

Introduction to irradiation
When biological material is irradiated, molecular bonds
are broken, ions created, and free radicals formed. The free
radicals attack further molecular bonds, and when DNA is
damaged it can lead to the formation of dominant lethal
mutations in the germ cells [16,17]. Damage to somatic
cells also occurs, especially in cells undergoing mitosis. In
general, damage to the germ and somatic cells increases
with dose and somatic damage decreases when irradiated
later in development of the insect as the number of cells
undergoing division decreases. As field competitiveness is
a crucial parameter, it is important to minimize the
adverse effects of irradiation. Although it is generally
believed that the released males need to be fully sterile, it
has been suggested that more sterility can be introduced
into the field population using lower radiation doses but
with more competitive insects [18,19]. Moreover, reduced
competitiveness can be partly overcome by increasing the
ratio of sterile-to-wild insects [20].

Radiation source and dosimetry
For the irradiation of insects, gamma rays are usually used
due to their high energy and penetration. The most com-
mon sources of gamma rays are the radioisotopes 60Co
and 137Cs as both have a long half-life and emit high-
energy gamma rays. 60Co is more easily manufactured and
is therefore more often used. In conventional self-
shielded irradiators (e.g. the Gammacell 220®, MDS Nor-
dion, Ottawa, Canada, Figure 1), the sample chamber is
surrounded by several rods or "pencils" of the isotope.
The dose rate of the cell is determined by the activity of the
source and the absorbed dose delivered to the insects is

controlled by adjusting the exposure time [21]. The sam-
ple chamber volume of this machine is 3.7 L. The dose
rate distribution in the chamber is not uniform and
accordingly, insects receive different dose rates when
placed at different positions in the chamber with the dose
rate being most uniform towards the centre of the cham-
ber. Besides gamma rays, X rays and accelerated electron

Cobalt60 irradiatorFigure 1
Cobalt60 irradiator. The Gammacell 220 ® (MDS Nordion, 
Ottawa, Canada), an example of a conventional self-shielded 
irradiator. In the irradiate position the sample chamber is 
surrounded by several rods or "pencils" of the isotope. The 
dose rate of the cell is determined by the activity of the 
source, and the absorbed dose delivered to the insects con-
trolled by adjusting the exposure time. The sample chamber 
is a vertical cylinder, approximately 150 mm diameter by 200 
mm tall (3.7 L) and has a typical dose uniformity ratio of 
about 1.7. Such self-shielded isotopic irradiators (60Co or 
less commonly 137Cs) are the main means of insect steriliza-
tion for SIT programmes worldwide.
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beams can also be used to irradiate insects. X rays of
appropriate energy have similar penetration as gamma
rays, and they have been used in a number of studies on
Anopheles irradiation [22-25], but the use of electron
beams has not been reported.

Dosimetry is used to quantify the dose received by the
irradiated insects. The selection of a suitable dosimetry
system depends on several considerations including: dose
range of interest, ease of handling, expertise available,
cost, and uncertainty that is inherent in the system. For SIT
programmes, a radiochromic film dosimetry system has
been proposed [26].

Spermatogenesis
During the successive stages of spermatogenesis, germ
cells multiply and differentiate. In short, spermatogenesis
includes the following developmental stages: primordial
germ cells, spermatogonia (primary and secondary), sper-
matocytes (primary and secondary), spermatids and sper-
matozoa (mature sperm cells). Spermatogenesis is cystic
and within one testis, cysts of different stages of develop-
ment can be found. Germ cells within a single spermato-
cyst are more or less at the same stage of development. As
spermatocysts mature, they break down and release sper-
matozoa into the sperm reservoir, situated in the anterior
section of the testis.

Spermatogenesis occurs mainly during the larval and
pupal stages but mosquito species differ in the timing of
the process [27]. In Anopheles culicifacies [28], a small
number of mature spermatozoa are already present in the
sperm reservoir in the late pupal stage and many mature
spermatocysts occupy the testis. During the last hour of
the pupal stage and the first hours after emergence, sper-
matocyst maturation continues and in newly emerged
males, spermatozoa make up 45% of the testis volume in
Anopheles stephensi [29] and 41% in An. culicifacies [28],
and spermatocysts in various stages of development
(mature or not) are present [28-30]. These spermatocysts
continue to mature and release sperm into the sperm res-
ervoir during adult life, and the percentage of the testis
occupied with sperm increases with age [28-30].

Radiation sensitivity
Radiation-induced dominant lethal mutations arise as a
result of chromosomal damage in the treated cells [17].
An excellent overview on the induction of dominant
lethal mutations by irradiation or chemosterilization is
provided by LaChance [31]. A dominant lethal mutation
occurring in a germ cell does not affect the maturation of
the cell into a gamete or the participation of the gamete to
form the zygote but causes the death of the developing
embryo [17]. In general, the earlier stages of spermatogen-
esis (spermatocytes and spermatogonia) are more radio-

sensitive than later stages (spermatids and spermatozoa)
in terms of irreversible damage, and radiation can result in
the death of the developing cell [21,32,33]. Irradiation of
the later stages results in dominant lethal mutations in
spermatozoa that lead to embryonic mortality after fertili-
zation [32,34,35]. Irradiation also damages somatic cells,
with those undergoing mitosis being the most sensitive
[33]. Reduced longevity is one of the most commonly
observed results of somatic damage [33]. Other effects of
irradiation can be more subtle. A study in the male house
fly Musca domestica showed that irradiation induced con-
siderable changes in the fine structure of the fibrillar flight
muscle and caused damage to the flight muscle mitochon-
dria; the damage persisted longer in flies irradiated with
higher doses [36].

Developmental stage
To reduce somatic damage, insects should be irradiated at,
or near to, the completion of their development, i.e. in
mosquitoes the late pupal and adult stages. Eggs [37,38]
and larvae have been irradiated [37], but this caused unac-
ceptable mortality in the treated insects. In general,
somatic damage is less pronounced in adults compared to
pupae [39], although much depends on the dose and
pupal age. However, handling and irradiation of pupae is
considered easier due to their relative robustness com-
pared to the adults. In Anopheles, under laboratory condi-
tions, the pupal stage lasts between 25-52 h [40],
depending on species and rearing conditions. Following
irradiation of Anopheles pharoensis pupae at different ages
[41], it was shown that emergence and longevity of adult
mosquitoes irradiated as pupae older than 15 h did not
differ from un-irradiated insects, even when the dose was
high (120 Gy). The irradiation of pupae aged 1-5 h drasti-
cally decreased the emergence rate. Similar results were
obtained in Anopheles gambiae s.s. [39]. In Anopheles quad-
rimaculatus, the irradiation of young pupae (1-4 h) with
90 Gy resulted in normal emergence [42] but longevity,
measured as the percent survival after three days, was
greatly reduced. The irradiation of adults following emer-
gence at night is generally performed from the next day
onwards (i.e. adults > 12 h old).

Handling
In experimental settings, pupae can be irradiated in small
wells or Petri dishes, lined with wet cotton wool covered
with filter paper [41,43] allowing for the irradiation of rel-
atively large numbers of pupae (~500). Adults, however,
are much more fragile and require careful handling. Prior
to irradiation, adults can be inactivated by chilling [44]
which allows them to be confined in a small space within
the irradiator so that dose variation can be reduced and
mechanical damage to the insects minimized. In small-
scale studies, adults can usually tolerate the chilling and
stacking for the irradiation but in operational campaigns,
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very large numbers of insects will have to be irradiated
and new protocols will be required. One system has been
developed [39,44] that allows relatively large numbers of
adults to be irradiated simultaneously (~7,000-14,000),
and for recent field releases of Aedes albopictus, pupae were
irradiated in a device that could hold ~20,000 individuals
[45].

Finding the optimal dose
To determine the optimal dose for released insects, a wide
range of doses is used to generate dose response data. Ini-
tially, it is important to confine the insects in a small vol-
ume in the centre of the irradiation chamber to ensure a
dose uniformity ratio of < 1.1 (where dose uniformity =
highest dose/lowest dose). In operational programmes,
this precision in dose distribution cannot be obtained as
very large numbers of insects will need to be irradiated
and the programme managers will need to define the
range of acceptable doses. When determining the optimal
dose, effects on sterility, longevity, and importantly, com-
petitiveness need to be taken into account [18].

Radiation-induced sterility
The level of sterility induced in irradiated males is meas-
ured by mating the males with un-irradiated virgin
females. Eggs are then collected from females individually
or en masse and checked for hatching. Unhatched eggs are
presumed to have died due to a dominant lethal mutation
(after correcting for the control sterility naturally present
in the colony [46]). Control sterility in laboratory colo-
nies was reported to be 16% in Anopheles arabiensis [24],
10% in An. stephensi and 15% in An. gambiae s.s. [47].

When the residual fertility is plotted on a logarithmic scale
against dose, an insight into the number of dominant
lethal mutations in a cell is provided [16,31]. A linear
response indicates a "one-hit" relationship whereas
departures from linearity indicate a "multi-hit" relation-
ship (i.e. two or more independent events in the same cell
produce a single dominant lethal event [16]).

Longevity
Reduced longevity is often a result of radiation-induced
somatic damage [33], and this must be measured, ideally,
under conditions that induce stress to emphasize any dif-
ferences. Specifically, male survival during the first days of
adult life is important as this is the period when mating is
expected to occur after release.

Competitiveness
The ability of irradiated males to locate, compete for, and
successfully couple with and inseminate the wild females
is as important as their level of induced sterility [48]. Mat-
ing competition experiments are performed to study how
well males are able to compete against un-irradiated

males for females. Initially, competition experiments are
carried out in the laboratory, but field or large outdoor
cage tests must also be conducted to reveal those effects
that are not evident under laboratory conditions [49]. Ide-
ally, irradiated males are competed against wild males for
wild females in a semi-field setting as wild males are likely
to perform poorly under laboratory conditions.

To perform competition experiments, un-irradiated males
and virgin females are introduced into a cage in a 1:1 ratio
and irradiated males are introduced at equal and higher
ratios. Males will compete for the females and hatching
data are collected from eggs laid en masse or from egg
batches collected from individual females that are sepa-
rated after mating. When eggs are collected en masse, a
method has been developed [50] for determining a point
estimate of competitiveness for sterilized insects. This
value, usually called the Fried index, can be determined
provided egg hatch data are known for control (Ha) (i.e.
un-irradiated females mated with un-irradiated males)
and sterile (Hs) matings (i.e. un-irradiated females mated
with irradiated males). The competitiveness index (C) is
then estimated as C = ((Ha-Ee)/(Ee-Hs))*(N/S); where Ee
is observed hatch, N = number of un-irradiated males, and
S = number of irradiated males [51]. Moreover, proce-
dures have been developed [52] to calculate an estimate of
the variance of the C value where a number of replicates
have been run, which permits detection of significant dif-
ferences between values. The Fried index is independent
of the ratio of un-irradiated to irradiated males but the
variance depends strongly on the ratio and has the lowest
value when half the observed matings are by irradiated
males.

Experimental work
Irradiation of Anopheles mosquitoes is performed with
two aims. Firstly, to investigate the effect of different radi-
ation doses on male sterility and competitiveness in the
framework of an SIT programme. Such studies are often a
precursor of field releases of radiation-sterilized males
(see [3] and [53]). Secondly, irradiation is used to produce
chromosomal rearrangements and mutations for the
development of genetic sexing systems. The latter studies
use a low dose so that progeny can be obtained for further
analysis.

Stage and dose range
The levels of sterility induced in several Anopheles species
are shown in Table 1. In majority of the studies, pupae
were irradiated and at a range of ages between 0-32 h.
Although it is desirable to irradiate pupae as late as possi-
ble, most studies used pupae around 24 h old as this is the
most convenient age for irradiation under normal labora-
tory rearing conditions and light regimes. Adults were irra-
diated from less than 24 to 96 h old. The doses
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Table 1: Irradiation studies on male Anopheles pupae (P) or adults (A) and mating irradiated males (I �) with un-irradiated females (U 
�). Information partly from IDIDAS Database [91]

Species Stage Age (hrs) Dose-range Induced sterility Ref.

Dose I� × U�

An. albimanus P < 24 20-80 50 84.3 [22]

80 100

An. arabiensis P 23-27 120 99.6 [39]

A < 16 120 99.4 [39]

A n.r. 40 75.0 [55]

P < 24 25-100 50 76.0 [56]

80 91.0

100 98.6

A < 24 25-100 50 71.7 [56]

80 96.7

100 98.1

An. gambiae s.s. P 0-7 120 99.5 [47]

24-32 120 99.5

A < 24 120 99.5

> 24 120 99.6

P 22-27 120 78-94 [39]

A < 24 80 91

120 99.3

A 24-48 45 87.4 [24]

An. pharoensis P 24 50-80 50 95.81 [37]

80 98.71

P 24 120 1001 [41]

A 72 5-50 30 76.5 [25]

50 96.8

An. quadrimaculatus P 24 118 100 [42]

An. stephensi P 4-28 10-120 50 80.3* [57]

80 97.2*
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administered ranged between 5-120 Gy with some studies
using a wide dose-range whilst others tested fewer,
depending on the goal of the study. Unfortunately, most
studies do not specify whether dosimetry was used to ver-
ify the absorbed dose.

Sterility
The relationship between induced sterility and log dose in
insects is sigmoid in form and follows the pattern of a
logistic response curve. At lower doses, an approximately
linear relationship between dose and induced sterility is
observed while at higher doses, the curve flattens such that
increasing amounts of radiation are required for propor-
tionally smaller increases in sterility [18,19,54]. In general
for Anopheles, doses of around 100-120 Gy induce more
than 98% sterility (Table 1). At a dose of 80 Gy, more than
90% sterility is observed and at a dose of 50 Gy, sterility
exceeds 70%. This is confirmed in chromosome rear-
rangements studies; when adult males were irradiated
with 40-45 Gy, the level of sterility ranged between 75-
87% [24,55]. However, a considerable amount of varia-
tion is observed when comparing sterility levels between
species (Table 1; [56]). A dose of 50 Gy applied to pupae
induced 76% sterility in An. arabiensis, 84% sterility in
Anopheles albimanus, and 80% sterility in An. stephensi,
while in An. pharoensis the level of sterility induced was
96% (Table 1). However, at the higher doses of 100-120
Gy, more than 98% sterility was induced for all species
(Table 1).

In a few studies, both pupal and adult stages were irradi-
ated, and the level of sterility induced in each was deter-
mined (Table 1). At the high dose of 120 Gy, equal levels
of sterility were found for pupal and adult irradiation in

An. gambiae s.s., although one experiment suggested
pupae to be more radioresistant. In An. arabiensis, pupae
were slightly more radioresistant at the doses of 60-80 Gy
compared to adults [56]. Anopheles stephensi pupae and
adults were irradiated in two separate studies; at 50 Gy, a
higher level of induced sterility was reported for the adult
irradiation. At 80 Gy, this difference was no longer
observed.

Longevity
Longevity was measured in a small number of studies and
scored as daily mortality under normal rearing condi-
tions. In most studies, differences in longevity of irradi-
ated males compared to un-irradiated males were small
with only trends being reported. Pupal irradiation in An.
pharoensis resulted in a non-significant reduction in lon-
gevity after irradiation at doses of 100-130 Gy [41]; while
in another study, a non-significant increase in longevity
after irradiation with 5-70 Gy was reported [43]. In An.
arabiensis, longevity of males irradiated as pupae with 25-
100 Gy was increased, similar, or reduced compared to
un-irradiated males but differences were small and lon-
gevity of males irradiated as adults was similar to un-irra-
diated males [56]. However, in An. stephensi, the longevity
of males irradiated as pupae at 80 Gy was significantly
reduced [57]. When pupae (22-27 h) and adults (< 24 h)
of An. gambiae s.s. were irradiated with a high dose of 120
Gy, an increased mortality for the irradiated pupae 24 h
after irradiation was reported compared to zero mortality
in the irradiated adults [39].

Mating ability
In general, the mating ability of males does not seem to be
adversely affected by irradiation. The number of eggs pro-

120 99.1*

P 0-7 120 98.1 [47]

24-32 120 98.4

A < 24 120 98.1

> 24 120 98.2

A < 24 120 97.5 [39]

A 60 10-80 50 87.4 [58]

80 96.5

* Induced sterility was calculated from observed sterility data
1 Unclear if observed or induced sterility was described
n.r. not recorded

Table 1: Irradiation studies on male Anopheles pupae (P) or adults (A) and mating irradiated males (I �) with un-irradiated females (U 
�). Information partly from IDIDAS Database [91] (Continued)
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duced by the females mated to males irradiated over a
wide dose-range as pupae [22,37,41] or adults [58] is sim-
ilar to un-irradiated insects; this suggests that sperm trans-
fer from irradiated males to females was normal.
Insemination rates were determined [22,56] and in An.
albimanus, irradiated males inseminated females at an
equal rate as un-irradiated males [22]. However, in the
irradiated males × irradiated females group at 80 Gy, a
greatly reduced insemination rate was observed [22]. In
An. arabiensis males irradiated as pupae, a weak but signif-
icant negative correlation was observed between dose and
insemination, while this was not observed after adult irra-
diation [56].

The ability of irradiated sperm to compete with normal
sperm was assessed in An. pharoensis [41]. Males irradiated
with 120 Gy as pupae were allowed to mate for a number
of nights with virgin females after which they were
removed and replaced with normal males. Females laid
sterile eggs indicating that either remating did not occur or
the first mating took precedence. Storage of sperm in the
testes did not restore fertility when males were mated at
five days after pupal irradiation with 120 Gy [41], and no
recovery of fertility was observed when males irradiated as
pupae or adults were remated to a second batch of virgin
females after 8-9 days [39]. In addition, storage of sperm
in the spermathecae from males irradiated as adults did
not restore fertility when females oviposited twice [39]. A
study in the honeybee, Apis mellifera, showed that mature
sperm could not repair radiation damage even after pro-
longed storage of up to one year in the spermatheca [59].

Competitiveness
Competition experiments in the laboratory have been per-
formed in some anopheline species. Irradiated males were
introduced in various ratios into rearing cages with un-
irradiated males and virgin females. In most cases, the un-
irradiated males and females were laboratory-reared indi-
viduals with the exception of one study [60] which used
wild-caught material. Mating was allowed for a number of
nights, and males were introduced soon after irradiation
[42,47] or some days after emergence [57].

A selection of data on competitiveness experiments in
anophelines is presented in Table 2. Most studies used
only one high dose and no comparison was made
between higher and lower doses with two exceptions
[57,61]. Irradiation almost always had a negative impact
on competitiveness of the males, especially so if the pupal
stage was irradiated, resulting in higher egg hatch than
would be expected if the irradiated males were equally
competitive with the un-irradiated males. Egg hatch could
be lowered by increasing the ratio of irradiated to un-irra-
diated males (Table 2) but it should be noted that where
the experimental egg hatch is close to either control value

(because the ratio used is too high or too low), the vari-
ance increases rapidly and the C values become meaning-
less [52,62].

High doses have a negative effect on competitiveness. In
An. stephensi, males irradiated as pupae with 80 Gy were
1.7 times more competitive than males irradiated as
pupae with 120 Gy [57]. In An. arabiensis, the use of the
higher irradiation dose of 120 Gy resulted in a reduced
competitiveness compared to 70 Gy for pupal and adult
irradiation [61]. In Culex quinquefasciatus, the irradiation
of adults with a dose of 50 Gy resulted in high competi-
tiveness, but as the dose increased the competitiveness
decreased [63].

Where both the pupal and the adult stages were irradiated
with 120 Gy, males irradiated as adults were more com-
petitive than males irradiated as pupae (Table 2). In Cx.
quinquefasciatus, a dose of 80 Gy applied to pupae resulted
in lower competitiveness when measured at a ratio of 1:1
compared to that for adult irradiation with a slightly
lower dose of 75 Gy [7,63].

Some field studies on competitiveness of radiation-steri-
lized mosquitoes have been performed, although few
with anophelines. In An. quadrimaculatus, pupae irradi-
ated with 120 Gy and released as adults were not able to
induce sterility in the target population after prolonged
releases due to behaviour differences as a result of the col-
onization process [64]. In Culex tarsalis, males irradiated
with 50 Gy (95% induced sterility) as adults were compet-
itive with un-irradiated males (measured at a ratio of 1:1)
from the laboratory or from field populations, in small
cages indoors or large cages outdoors [65]. Males irradi-
ated with 70 Gy were also competitive in small cages (not
tested in field cages [65]). In a small release of Cx. tarsalis
(i.e. single release of 13,000 males), males irradiated with
60 Gy were effective in inducing some sterility in the target
population [66]. The continuous release of Aedes aegypti
males (i.e. 4.6 million in 43 weeks) sterilized as pupae did
not, however, result in population suppression, but the
dose applied was high (110-180 Gy; [67]).

Optimizing sterilization
Many factors influence the competitiveness of irradiated
insects. Several strategies to reduce somatic damage dur-
ing the irradiation process are discussed below.

Low oxygen environment
An important factor during radiation is the oxygen level as
oxygen molecules form free radicals that induce biological
damage [68]. Irradiation in a low oxygen environment
reduces genetic and somatic damage and consequently,
higher doses are needed to induce sterility levels compara-
ble to those induced in air, although it is often observed
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Table 2: Competitiveness studies performed on Anopheles mosquitoes under laboratory conditions. The ratio of irradiated males (I �) 
competing with un-irradiated males (U �) for un-irradiated females (U �) is given. Insects were irradiated in air. Stage of irradiation 
is pupa (P) or adult (A). Where eggs were collected en masse, the competitiveness value (C) is calculated according to the Fried index 
([51]; see text). In the lower part of the table data were collected by individual egg batches and C = (Sterile batches/Fertile batches) * 
(Number un-irradiated males/Number of sterile males)

I� U� U� Dose (Gy) Species Stage Age (hrs) Hatch (%) C value Ref.

Obs. Exp.

1 1 1 120 An. pharoensis P 20-24 39 34 0.72 [60]

5 1 1 20 11 0.47

10 1 1 4 6 1.58

15 1 1 1 4 4.40

10 1 11 6 7 1.03

1 1 1 118 An. quadrimaculatus P 24 74 48 0.30 [42]

2 1 1 85 32 0.06

3 1 1 42 24 0.43

4 1 1 53 19 0.20

6 1 1 42 14 0.21

10 1 1 28 9 0.24

1 1 1 80 An. stephensi P 4-28 54 50 0.88 [57]

1 1 1 120 66 50 0.51

# Batches C value

Fertile Sterile

1 1 1 120 An. gambiae s.s. P 0-7 30 7 0.24 [47]2

1 1 1 P 24-32 22 10 0.47

1 1 1 A < 24 24 26 1.06

1 1 1 A > 24 21 23 1.10

1 1 1 120 An. stephensi P 0-7 32 6 0.20

1 1 1 P 24-32 29 9 0.32

1 1 1 A < 24 22 22 1.07

1 1 1 A > 24 19 24 1.35

1 1 1 70 An. arabiensis P 20-26 102 73 0.76 [61]3

1 1 1 120 P 20-26 141 43 0.34
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that competitiveness and longevity are improved despite
the higher dose required. Two strategies are commonly
used to reduce oxygen levels. Irradiation under hypoxia
brought about by respiration of pupae kept in sealed bags
is routinely performed with Mediterranean fruit fly pupae.
Nitrogen has been used experimentally in tsetse [69] and
routinely in Western Australia for Mediterranean fruit fly
[70]. Prior to irradiation, the container that holds the
insects is flushed with nitrogen for some time after which
irradiation follows. Beneficial effects, i.e. long-term sur-
vival, of irradiation in a nitrogen environment were dem-
onstrated in Mediterranean fruit fly [68] and tsetse
[69,71,72].

Irradiation of mosquitoes in nitrogen has been performed
in one anopheline and two culicine species. No beneficial
effects of pupal radiation in An. gambiae s.s. [39], or pupal
or adult radiation in Cx. quinquefasciatus [63] in nitrogen
were reported. As expected, insects required much higher
doses to achieve adequate sterility in nitrogen compared
to air but at those higher doses, only a marginal improve-
ment in competitiveness was observed in Culex adults
(competitiveness was not assessed in An. gambiae s.s.).
However in Ae. aegypti, irradiation in nitrogen was shown
to be beneficial [73]. Competitiveness of males irradiated
at 35, 70 or 100 Gy in nitrogen was equal to that of un-
irradiated males, while males irradiated in air at the same
doses were less competitive. Irradiation in nitrogen did
increase egg hatch to some extent, but at 100 Gy, in nitro-
gen as well as air, 100% sterility was achieved.

Radioprotectors
Radioprotectors are substances which when present dur-
ing irradiation diminish its effects. A wide range of radio-
protectors is available with various modes of action [74].
A range of protectors including amino-acids, cysteamine
(aminothiol), diaminoethanetetraacetic acid (EDTA), and
2-aminoethyl isothiuronium bromide (AET) were tested

on Cx. quinquefasciatus [75]. Pupae were soaked for a
number of hours in the compounds, pre- and post-irradi-
ation. None of the tested radioprotectors seemed to have
a beneficial effect on the competitiveness or sterility of the
irradiated males. However, little absorption of the radio-
protector is expected in the non-ingesting pupal stage.
Another protector, dimethyl sulphoxide (DMSO),
ingested in the adult stage before irradiation, decreased
the induction of dominant lethal mutations by X rays in
Anopheles atroparvus [76]. However, DMSO is toxic and
even at low concentrations a reduced life span was
observed.

Another potential class of radioprotectors are anti-oxi-
dants which neutralize free radicals and thus prevent
damage. One of these is nordihydroguaiaretic acid
(NDGA), a reducing agent that replaces the naturally
present reducing agent glutathione, whose amount
decreases with the age of an organism [77]. NDGA admin-
istered to the larval diet of Ae. aegypti increased the longev-
ity of both sexes over un-treated controls by 42-64% [78].
The use of antioxidants has not been studied in mosquito
irradiation.

Other sterilization methods
Even though it is known that irradiation reduces compet-
itiveness, other methods to induce sterility are controver-
sial or not in use. Chemosterilants offer high levels of
sterility with more competitive insects compared to irradi-
ation [7,57] but their use requires special safety precau-
tions which are difficult to implement under field
conditions. Even though public opinion led to the disap-
pearance of chemosterilants for mosquito control in the
seventies, they continue to be used against other pests. In
1991, a large field trial to eradicate introduced sea lam-
preys Petromyzon marinus from the Great Lakes (USA) was
initiated and lasted for several years. Radiation steriliza-
tion was considered but yielded unsatisfactory results

1 1 1 70 A < 24 80 69 0.85

1 1 1 120 A < 24 114 59 0.54

1 1 1 120 P 23-27 14 6 0.43 [39]

1 1 1 120 An. gambiae s.s. P 22-27 20 14 0.70

1 1 1 A < 24 39 48 3.20

1 Laboratory irradiated males competed against wild males for wild females under laboratory conditions.
2Fertile and sterile batches averaged for the three replicates.
3Small cage results only.

Table 2: Competitiveness studies performed on Anopheles mosquitoes under laboratory conditions. The ratio of irradiated males (I �) 
competing with un-irradiated males (U �) for un-irradiated females (U �) is given. Insects were irradiated in air. Stage of irradiation 
is pupa (P) or adult (A). Where eggs were collected en masse, the competitiveness value (C) is calculated according to the Fried index 
([51]; see text). In the lower part of the table data were collected by individual egg batches and C = (Sterile batches/Fertile batches) * 
(Number un-irradiated males/Number of sterile males) (Continued)
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regarding male survival and competitiveness hence, male
lampreys were sterilized with the chemosterilant bisazir.
However, the hazards of handling were acknowledged
and alternative strategies were explored to eliminate the
use of mutagenic agents [79].

Another potential class of sterilants are insect growth reg-
ulators (IGRs). IGRs have been used as sterilizing agents
against housefly M. domestica [80], blowfly Lucilia sericata
[81] (triflumuron) and the Mediterranean fruit fly [82]
(lufenuron) using impregnated targets. The compounds
were effective in inducing some sterility, although
dependent on the dose administered [81]. Males could
induce sterility in unexposed females, although with vari-
ous degrees of success, and this was attributed to either the
result of direct impairment of sperm development or
transfer of active ingredient during mating to the females
[81]. Also, in the tsetse fly Glossina morsitans morsitans ste-
rility could be introduced in mates when males were
exposed to certain juvenile hormone mimics as pupae
[83]. The potential use of IGR's as a sterilant for mosqui-
toes remains unknown.

Ionizing sources
Although gamma rays are the most common source of
ionizing irradiation used for insect sterilization over the
last decades, high-energy (5 to 10 MeV) electrons gener-
ated by accelerators and X rays can also be used [18,21].
High energy photons, both X rays and gamma rays, are
gradually absorbed by the material they pass through so
that the absorbed dose decays exponentially with depth
into the material. The rate of the decay depends on the
photon energy; at the energy of 60Co gamma rays it
declines to half after about 23 cm in water. In contrast,
electrons penetrate only a short distance before the beam
is completely stopped. At an energy of 5 MeV, the penetra-
tion of an electron beam is around 4 cm in water. Even if
a sample is exposed from both sides, the use of high-
energy electrons, therefore, places important restrictions
on the size of the irradiation canister used. Electron beams
may also be converted to X rays by directing the electron
beam at a high-atomic number material, such as tungsten,
but the conversion efficiency, which depends on the elec-
tron beam energy is low, yielding only a few percent of the
electron beam energy at 5 MeV. The recent approval of 7.5
MeV X rays from accelerators in the USA will increase the
conversion efficiency available [84].

X rays can also be produced by orthovoltage tubes produc-
ing X rays with energies in the 100-500 keV range. Pene-
tration is lower than from gamma rays or X rays produced
by electron beam machines but adequate dose uniformity
can be achieved by rotating the samples. X ray irradiators
have suffered from low dose rates caused by the difficulty
of removing the waste heat produced by the tubes, but

recent advances in tube design have increased the maxi-
mum tube power substantially and dose rates of 10-15 Gy
min-1 are now possible in self-shielded cabinet irradiators
(Figure 2) with a working volume of about 20 L (RS2400,
Rad Source Technologies Inc, Alpharetta, Georgia, USA;
http://www.radsource.com). These self-shielded irradia-
tors require no special provisions for radiation security.

Isotopic irradiators have the advantage that they have a
long half-life and that their dose rate is high, but the prob-
lems associated with transportation and disposal of radi-
oactive materials are becoming increasingly difficult. A
self-shielded unit, where the insect container is sur-
rounded by several pencils, has the disadvantage that the
container size is limited placing important restrictions on
the throughput in SIT programmes. Furthermore, dose
uniformity is poor, forcing the utilized volume to be fur-
ther restricted. Panoramic irradiators are therefore more
suitable as several containers can be placed around a radi-
ation source in a large irradiation room. The containers
are then rotated around their axis to achieve adequate
dose uniformity [21] but dose rates tend to be lower than
in self-contained irradiators.

The cost of an electron accelerator is of the order of US $1
million and power costs are high. Initial installation of the
orthovoltage X ray machine is US $250,000, with a tube
guaranteed for 1000 h, and a replacement tube costs

Prototype X ray machineFigure 2
Prototype X ray machine. An RS2400 self-shielded cabi-
net 150 kV X ray irradiator (Rad Source Technologies Inc, 
Alpharetta, Georgia, USA), with a working volume of about 
18 L divided into 5 horizontal cylinders 176 mm diameter by 
150 mm long (3.6 L each) with a dose uniformity ratio of 1.3. 
This unit requires a 10 kW, three phase electrical supply and 
is cooled by chilled water or a self contained water-to-air 
heat exchanger (seen in the background). High power X ray 
units have only recently become available and are not in gen-
eral use yet.
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about US $15,000. The installation costs of a gamma irra-
diator are around US $200,000 for a self-shielded cell and
US $400,000 for a panoramic irradiator but the costs of
transporting radio-isotopes are rising all the time as the
regulations covering their transport become ever stricter.

Discussion
In the light of all the new and exciting molecular tech-
niques that are becoming available to create sterile insects,
sterilization by irradiation might seem a little mundane.
But unlike these promising techniques, irradiation has
proved to be a successful, safe, and accepted way to steri-
lize large numbers of insects [11]. Although there are valid
criticisms of SIT [85], under specific conditions, SIT could
be an important tool to reduce mosquito population sizes
in selected areas [86]. In addition, much criticism is
directed at projects initiated decades ago whilst these days
improved technologies and methods are at hand to facili-
tate many aspects of SIT programmes and lessons learned
from the past can be applied to minimize future failure
[87]. The optimal radiation dose for an SIT programme
should be chosen in such a way that it balances induced
sterility with competitiveness [18]. The concept of induc-
ing 100% sterility, which was followed in the past, has led
to the use of high irradiation doses, which in some insects
reduced competitiveness to the extent that the target pop-
ulation was not sufficiently suppressed. It is now advo-
cated that more sterility can be induced in the target
population if insects are subjected to lower, partially-ster-
ilizing doses [11,88].

The optimal developmental stage for irradiation (e.g.
pupa or adult) depends on many factors including, ease of
handling on a mass-production scale, competitiveness of
the insect and release methodology. There was some dif-
ference in radiation sensitivity between anopheline spe-
cies indicating that optimal doses in SIT programmes
need to be specified for each species. The data presented
here showed that irradiated anopheline males have been
subjected to competitiveness assays primarily in labora-
tory settings and these should be complemented with
studies performed under more natural conditions [49].
When determining the competitiveness of male anophe-
lines by conventional competition assays, it has to be kept
in mind that rather limited information on the courtship
behaviour of wild males is available. Critical knowledge
of what the important parameters are that contribute to a
male's success in the field is lacking [89], although exper-
imental work is directed increasingly to understanding
male mating success [30,90]. Converting these successful
traits back to measurable parameters in the laboratory is
the subsequent challenge.

To reduce somatic damage caused by the irradiation proc-
ess, systems such as a hypoxic environment and radiation

protecting agents could be useful for mosquitoes but
remain to be tested in depth. A loss of competitiveness can
be overcome by increasing the number of released insects
[20] but this will result in additional costs. Other methods
to induce sterility, e.g. chemosterilization or transgenic
approaches, are unlikely to substitute for irradiation in the
near future (but see [14]). Other potential sterilants like
IGRs remain to be tested in mosquitoes but would only be
of use for an SIT programme if they can be applied on a
mass-scale before release.

The problems with supply, usage and disposal of radioac-
tive isotopes means that fewer new isotopic irradiators
will be installed in the future, but the recent developments
in X ray technology provides an adequate alternative with-
out the security risks. The dose delivered to a large batch
of insects required for mass release is not uniform so the
minimum and maximum dose that the insects can receive
should be determined. Quality control of the system will
be crucial for a successful outcome. Dosimetry should be
made part of the production process, and doses delivered
to each batch need to be in the acceptable dose range. A
lower dose leads to the release of insects with insufficient
degree of sterility; a higher dose will produce insects with
insufficient competitiveness, which will undermine the
programme's efforts and overall success of the campaign.
Successful quality control programmes have been imple-
mented in ongoing SIT campaigns [26] and this knowl-
edge can readily be transferred to other SIT programmes.

Conclusion
At present, irradiation is the most obvious choice to steri-
lize mosquitoes in an SIT programme. Substantial litera-
ture on anopheline irradiation is available but should be
complemented with competitiveness studies performed
in a (semi-)field setting to determine the optimal dose
and developmental stage for sterilization. The optimal
development stage for irradiation however, also depends
on the logistics of the irradiation process (e.g. the need to
irradiate large numbers of insects), release methodology,
and costs.
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